Suppr超能文献

氨氮氧化菌介导的羟基磷灰石颗粒:理化性质、三维层次结构和生物膜厚度。

Anammox-Mediated Hydroxyapatite Granules: Physicochemical Properties, 3D Hierarchy, and Biofilm Thickness.

机构信息

Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.

出版信息

Environ Sci Technol. 2023 Jul 18;57(28):10242-10251. doi: 10.1021/acs.est.3c00596. Epub 2023 Jul 5.

Abstract

Biomineralization inspired the development of simultaneous biological transformations and chemical precipitation for simultaneous nitrogen removal and phosphorus recovery from wastewater, which could compensate for the incapacity of phosphorus management in the new biological route of anaerobic ammonium oxidation (anammox). In this study, we strengthened anammox-mediated biomineralization by long-term feeding of concentrated N, P, and Ca substrates, and a self-assembled matrix of anammox bacteria and hydroxyapatite (HAP) was fabricated in a granular shape, defined as HAP-anammox granules. HAP was identified as the dominant mineral using elemental analysis, X-ray diffraction, and Raman spectroscopy. The intensive precipitation of HAP resulted in a higher inorganic fraction and substantially improved settleability of anammox biomass, which facilitated HAP precipitation by acting as nucleation and metabolically elevated pH. By using X-ray microcomputed tomography, we visually represented the hybrid texture of interwoven HAP pellets and biomass, the core-shell layered architecture of different-sized HAP-anammox granules, and their homogeneously regulated thickness of the outer biofilm (from 118 to 635 μm). This unique architecture endows HAP-anammox granules with outstanding settleability, active biofilm, and tightly bonded biofilm with the carrier, which may explain the excellent performance of these HAP-anammox granules under various challenging operational conditions in previous studies.

摘要

受生物矿化启发,发展了同步生物转化和化学沉淀技术,用于从废水中同时进行氮去除和磷回收,这可以弥补新型厌氧氨氧化(anammox)生物途径中磷管理的不足。在这项研究中,我们通过长期喂养浓缩的 N、P 和 Ca 基质来增强 anammox 介导的生物矿化,并且在颗粒状基质中自组装了 anammox 细菌和羟磷灰石(HAP)的基质,定义为 HAP-anammox 颗粒。使用元素分析、X 射线衍射和拉曼光谱鉴定出 HAP 是主要的矿物。由于 HAP 的强烈沉淀,导致无机部分增加,并且 anammox 生物质的沉降性能得到了极大的提高,这通过充当成核作用和代谢提高 pH 值来促进 HAP 的沉淀。通过使用 X 射线微计算机断层扫描,我们直观地展示了交织的 HAP 颗粒和生物质的混合纹理、不同大小的 HAP-anammox 颗粒的核壳层状结构,以及其均匀调节的外层生物膜厚度(从 118 到 635μm)。这种独特的结构赋予 HAP-anammox 颗粒出色的沉降性能、活性生物膜以及与载体紧密结合的生物膜,这可能解释了在以前的研究中,这些 HAP-anammox 颗粒在各种具有挑战性的操作条件下表现出色的原因。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验