Gong Peng, Chai Shibo, Li Xingjie, Dong Yibo, Zhai Shengjun, Chen Xihao, Wang Ning, Li Yuanyuan, Liu Jinping
School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
School of Chemistry, Chemical Engineering and Life Sciences and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.
Adv Sci (Weinh). 2025 Jul;12(25):e2501362. doi: 10.1002/advs.202501362. Epub 2025 May 2.
Sodium vanadium oxy-fluorophosphates (NVOPF), as typical fluorinated polyanionic compounds, are considered high-voltage and high-capacity cathode materials for aqueous sodium-ion storage. However, the poor cycle life caused by interfacial degradation (especially the attack of specific HF by-products) greatly hampers their application in aqueous electrolytes. Here, it is shown that in situ converting harmful HF derivate to F-containing cathode electrolyte interphase (CEI) can overcome the above challenge. As a proof-of-concept, a conformal AlO sacrificial layer is precoated on NVOPF for on-site generating robust AlF-rich CEI while eliminating continuous HF release. The evolved CEI chemistry mitigates interfacial side reactions, inhibits vanadium dissolution, and promotes Na transport kinetics, thus significantly boosting cycling stability (capacity retention rate increased to 3.15 times), rate capability, and even low-temperature performance (≈1.5 times capacity improvement at -20 °C). When integrated with pseudocapacitive zeolite-templated carbon anode and adhesive hydrogel electrolyte, a unique 2.3 V quasi-solid-state sodium-ion hybrid capacitor is developed, exhibiting remarkable cycle life (77.0% after 1000 cycles), high energy and power densities, and exceptional safety against extreme conditions. Furthermore, a photovoltaic energy storage module is demonstrated, highlighting the potential use in future smart/microgrids. The work paves new avenues for enabling the use of unstable electrode materials via interfacial engineering.
氟代钒氧基磷酸钠(NVOPF)作为典型的含氟聚阴离子化合物,被认为是用于水系钠离子存储的高电压、高容量正极材料。然而,界面降解(尤其是特定HF副产物的侵蚀)导致的较差循环寿命极大地阻碍了它们在水系电解质中的应用。在此,研究表明将有害的HF衍生物原位转化为含F的正极电解质界面(CEI)可以克服上述挑战。作为概念验证,在NVOPF上预涂覆一层保形的AlO牺牲层,用于现场生成富含AlF的坚固CEI,同时消除持续的HF释放。演变后的CEI化学性质减轻了界面副反应,抑制了钒的溶解,并促进了Na传输动力学,从而显著提高了循环稳定性(容量保持率提高到3.15倍)、倍率性能,甚至低温性能(在-20°C下容量提高约1.5倍)。当与赝电容型沸石模板碳负极和粘性水凝胶电解质集成时,开发出一种独特的2.3V准固态钠离子混合电容器,具有出色的循环寿命(1000次循环后为77.0%)、高能量和功率密度以及在极端条件下的卓越安全性。此外,展示了一个光伏储能模块,突出了其在未来智能/微电网中的潜在用途。这项工作为通过界面工程实现不稳定电极材料的应用开辟了新途径。