Suppr超能文献

[100千伏峰值下用于头颈部CT血管造影的深度学习重建算法重建图像的质量]

[Quality of Images Reconstructed by Deep Learning Reconstruction Algorithm for Head and Neck CT Angiography at 100 kVp].

作者信息

Lu Xiao-Ping, Wang Yun, Chen Yu, Wang Yan-Ling, Xu Min, Jin Zheng-Yu

机构信息

Department of Radiology,PUMC Hospital,CAMS and PUMC,Beijing 100730,China.

Canon Medical System (China) Company Limited,Beijing 100015,China.

出版信息

Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2023 Jun;45(3):416-421. doi: 10.3881/j.issn.1000-503X.15170.

Abstract

Objective To evaluate the impact of deep learning reconstruction algorithm on the image quality of head and neck CT angiography (CTA) at 100 kVp. Methods CT scanning was performed at 100 kVp for the 37 patients who underwent head and neck CTA in PUMC Hospital from March to April in 2021.Four sets of images were reconstructed by three-dimensional adaptive iterative dose reduction (AIDR 3D) and advanced intelligent Clear-IQ engine (AiCE) (low,medium,and high intensity algorithms),respectively.The average CT value,standard deviation (SD),signal-to-noise ratio (SNR),and contrast-to-noise ratio (CNR) of the region of interest in the transverse section image were calculated.Furthermore,the four sets of sagittal maximum intensity projection images of the anterior cerebral artery were scored (1 point:poor,5 points:excellent). Results The SNR and CNR showed differences in the images reconstructed by AiCE (low,medium,and high intensity) and AIDR 3D (all <0.01).The quality scores of the image reconstructed by AiCE (low,medium,and high intensity) and AIDR 3D were 4.78±0.41,4.92±0.27,4.97±0.16,and 3.92±0.27,respectively,which showed statistically significant differences (all <0.001). Conclusion AiCE outperformed AIDR 3D in reconstructing the images of head and neck CTA at 100 kVp,being capable of improving image quality and applicable in clinical examinations.

摘要

目的 评估深度学习重建算法对100 kVp下头颈CT血管造影(CTA)图像质量的影响。方法 对2021年3月至4月在阜外医院行头颈CTA的37例患者采用100 kVp进行CT扫描。分别采用三维自适应迭代剂量降低(AIDR 3D)和高级智能清晰成像引擎(AiCE)(低、中、高强度算法)重建四组图像。计算横断面图像感兴趣区域的平均CT值、标准差(SD)、信噪比(SNR)和对比噪声比(CNR)。此外,对四组大脑前动脉矢状面最大密度投影图像进行评分(1分:差,5分:优)。结果 AiCE(低、中、高强度)和AIDR 3D重建的图像在SNR和CNR上存在差异(均<0.01)。AiCE(低、中、高强度)和AIDR 3D重建图像的质量评分分别为4.78±0.41、4.92±0.27、4.97±0.16和3.92±0.27,差异有统计学意义(均<0.001)。结论 在100 kVp下重建头颈CTA图像时,AiCE优于AIDR 3D,能够提高图像质量,适用于临床检查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验