Suppr超能文献

二等分图匹配改善了来自连接组的双侧同源神经元的自动配对。

Bisected graph matching improves automated pairing of bilaterally homologous neurons from connectomes.

作者信息

Pedigo Benjamin D, Winding Michael, Priebe Carey E, Vogelstein Joshua T

机构信息

Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.

Zoology, University of Cambridge, Cambridge, UK.

出版信息

Netw Neurosci. 2023 Jun 30;7(2):522-538. doi: 10.1162/netn_a_00287. eCollection 2023.

Abstract

Graph matching algorithms attempt to find the best correspondence between the nodes of two networks. These techniques have been used to match individual neurons in nanoscale connectomes-in particular, to find pairings of neurons across hemispheres. However, since graph matching techniques deal with two isolated networks, they have only utilized the ipsilateral (same hemisphere) subgraphs when performing the matching. Here, we present a modification to a state-of-the-art graph matching algorithm that allows it to solve what we call the bisected graph matching problem. This modification allows us to leverage the connections between the brain hemispheres when predicting neuron pairs. Via simulations and experiments on real connectome datasets, we show that this approach improves matching accuracy when sufficient edge correlation is present between the contralateral (between hemisphere) subgraphs. We also show how matching accuracy can be further improved by combining our approach with previously proposed extensions to graph matching, which utilize edge types and previously known neuron pairings. We expect that our proposed method will improve future endeavors to accurately match neurons across hemispheres in connectomes, and be useful in other applications where the bisected graph matching problem arises.

摘要

图匹配算法试图找到两个网络节点之间的最佳对应关系。这些技术已被用于匹配纳米级连接组中的单个神经元,特别是用于找到跨半球的神经元配对。然而,由于图匹配技术处理的是两个孤立的网络,它们在执行匹配时仅利用了同侧(同一半球)子图。在这里,我们对一种先进的图匹配算法进行了改进,使其能够解决我们所称的二等分图匹配问题。这种改进使我们在预测神经元对时能够利用大脑半球之间的连接。通过对真实连接组数据集的模拟和实验,我们表明,当对侧(半球之间)子图之间存在足够的边相关性时,这种方法可以提高匹配精度。我们还展示了如何通过将我们的方法与先前提出的图匹配扩展相结合来进一步提高匹配精度,这些扩展利用了边的类型和先前已知的神经元配对。我们期望我们提出的方法将改善未来在连接组中跨半球准确匹配神经元的努力,并在出现二等分图匹配问题的其他应用中发挥作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b101/10319359/38f6c712ba1d/netn-7-2-522-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验