Song Xiaoyu, Ji Jiayi, Wang Pei
Tisch Cancer Institute, Institute for Health Care Delivery Science, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY.
Tisch Cancer Tisch Cancer Institute, Institute for Health Care Delivery Science, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY.
J Am Stat Assoc. 2023;118(541):43-55. doi: 10.1080/01621459.2022.2110876. Epub 2022 Oct 5.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused over six million deaths in the ongoing COVID-19 pandemic. SARS-CoV-2 uses ACE2 protein to enter human cells, raising a pressing need to characterize proteins/pathways interacted with ACE2. Large-scale proteomic profiling technology is not mature at single-cell resolution to examine the protein activities in disease-relevant cell types. We propose , a novel statistical framework to identify epithelial-cell specific associations between ACE2 and other proteins/pathways with bulk proteomic data. decomposes the data and models cell-type-specific conditional joint distribution of proteins through a mixture model. It improves cell-type composition estimation from prior input, and utilizes a non-parametric inference framework to account for uncertainty of cell-type proportion estimates in hypothesis test. Simulations demonstrate has well-controlled false discovery rates and favorable powers in non-asymptotic settings. We apply to the proteomic data of 110 (tumor adjacent) normal lung tissue samples from the Clinical Proteomic Tumor Analysis Consortium lung adenocarcinoma study, and identify interferon / response pathways as the most significant pathways associated with ACE2 protein abundances in epithelial cells. Strikingly, the association direction is sex-specific. This result casts light on the sex difference of COVID-19 incidences and outcomes, and motivates sex-specific evaluation for interferon therapies.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)在持续的新冠疫情中已导致超过600万人死亡。SARS-CoV-2利用血管紧张素转换酶2(ACE2)蛋白进入人体细胞,这迫切需要对与ACE2相互作用的蛋白质/信号通路进行表征。大规模蛋白质组分析技术在单细胞分辨率下尚不成熟,无法检测疾病相关细胞类型中的蛋白质活性。我们提出了一种新颖的统计框架,用于通过整体蛋白质组数据识别ACE2与其他蛋白质/信号通路之间上皮细胞特异性关联。该框架通过混合模型对数据进行分解并对蛋白质的细胞类型特异性条件联合分布进行建模。它改进了基于先前输入的细胞类型组成估计,并利用非参数推断框架在假设检验中考虑细胞类型比例估计的不确定性。模拟表明,在非渐近情况下,该框架具有良好控制的错误发现率和良好的功效。我们将该框架应用于临床蛋白质组肿瘤分析联盟肺腺癌研究中110份(肿瘤邻近)正常肺组织样本的蛋白质组数据,确定干扰素/反应信号通路是上皮细胞中与ACE2蛋白丰度最相关的信号通路。引人注目的是,这种关联方向具有性别特异性。这一结果揭示了新冠发病率和结局的性别差异,并推动了对干扰素疗法的性别特异性评估。