Suppr超能文献

用于鉴定参与大豆抗孢囊线虫的新大豆基因的大规模数据挖掘流程

Large-scale data mining pipeline for identifying novel soybean genes involved in resistance against the soybean cyst nematode.

作者信息

Nissan Nour, Hooker Julia, Arezza Eric, Dick Kevin, Golshani Ashkan, Mimee Benjamin, Cober Elroy, Green James, Samanfar Bahram

机构信息

Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada.

Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada.

出版信息

Front Bioinform. 2023 Jun 20;3:1199675. doi: 10.3389/fbinf.2023.1199675. eCollection 2023.

Abstract

The soybean cyst nematode (SCN) [ Ichinohe] is a devastating pathogen of soybean [ (L.) Merr.] that is rapidly becoming a global economic issue. Two loci conferring SCN resistance have been identified in soybean, Rhg1 and Rhg4; however, they offer declining protection. Therefore, it is imperative that we identify additional mechanisms for SCN resistance. In this paper, we develop a bioinformatics pipeline to identify protein-protein interactions related to SCN resistance by data mining massive-scale datasets. The pipeline combines two leading sequence-based protein-protein interaction predictors, the Protein-protein Interaction Prediction Engine (PIPE), PIPE4, and Scoring PRotein INTeractions (SPRINT) to predict high-confidence interactomes. First, we predicted the top soy interacting protein partners of the Rhg1 and Rhg4 proteins. Both PIPE4 and SPRINT overlap in their predictions with 58 soybean interacting partners, 19 of which had GO terms related to defense. Beginning with the top predicted interactors of Rhg1 and Rhg4, we implement a "guilt by association" proteome-wide approach to identify novel soybean genes that may be involved in SCN resistance. This pipeline identified 1,082 candidate genes whose local interactomes overlap significantly with the Rhg1 and Rhg4 interactomes. Using GO enrichment tools, we highlighted many important genes including five genes with GO terms related to response to the nematode (GO:0009624), namely, , , , , and . This study is the first of its kind to predict interacting partners of known resistance proteins Rhg1 and Rhg4, forming an analysis pipeline that enables researchers to focus their search on high-confidence targets to identify novel SCN resistance genes in soybean.

摘要

大豆胞囊线虫(SCN)[猪野]是大豆[(L.)Merr.]的一种毁灭性病原菌,正迅速成为一个全球经济问题。在大豆中已鉴定出两个赋予SCN抗性的基因座,Rhg1和Rhg4;然而,它们提供的抗性在下降。因此,确定额外的SCN抗性机制势在必行。在本文中,我们开发了一种生物信息学流程,通过挖掘大规模数据集来识别与SCN抗性相关的蛋白质-蛋白质相互作用。该流程结合了两个领先的基于序列的蛋白质-蛋白质相互作用预测器,蛋白质-蛋白质相互作用预测引擎(PIPE)、PIPE4和评分蛋白质相互作用(SPRINT),以预测高可信度的相互作用组。首先,我们预测了Rhg1和Rhg4蛋白的顶级大豆相互作用蛋白伙伴。PIPE4和SPRINT在其预测中与58个大豆相互作用伙伴重叠,其中19个具有与防御相关的基因本体术语。从Rhg1和Rhg4的顶级预测相互作用蛋白开始,我们实施一种“关联有罪”的全蛋白质组方法,以识别可能参与SCN抗性的新大豆基因。该流程鉴定出1082个候选基因,其局部相互作用组与Rhg1和Rhg4相互作用组有显著重叠。使用基因本体富集工具,我们突出了许多重要基因,包括五个具有与对线虫反应相关的基因本体术语(GO:0009624)的基因,即、、、、和。本研究是首次预测已知抗性蛋白Rhg1和Rhg4的相互作用伙伴,形成了一个分析流程,使研究人员能够将搜索重点放在高可信度目标上,以鉴定大豆中的新SCN抗性基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7baf/10319130/efe8440c1f48/fbinf-03-1199675-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验