Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary.
J Chem Phys. 2023 Jul 7;159(1). doi: 10.1063/5.0153293.
A theoretical framework is presented for the computation of the rovibrational polaritonic states of a molecule in a lossless infrared (IR) microcavity. In the proposed approach, the quantum treatment of the rotational and vibrational motions of the molecule can be formulated using arbitrary approximations. The cavity-induced changes in electronic structure are treated perturbatively, which allows using the existing polished tools of standard quantum chemistry for determining electronic molecular properties. As a case study, the rovibrational polaritons and related thermodynamic properties of H2O in an IR microcavity are computed for varying cavity parameters, applying various approximations to describe the molecular degrees of freedom. The self-dipole interaction is significant for nearly all light-matter coupling strengths investigated, and the molecular polarizability proved important for the correct qualitative behavior of the energy level shifts induced by the cavity. On the other hand, the magnitude of polarization remains small, justifying the perturbative approach for the cavity-induced changes in electronic structure. Comparing results obtained using a high-accuracy variational molecular model with those obtained utilizing the rigid rotor and harmonic oscillator approximations revealed that as long as the rovibrational model is appropriate for describing the field-free molecule, the computed rovibropolaritonic properties can be expected to be accurate as well. Strong light-matter coupling between the radiation mode of an IR cavity and the rovibrational states of H2O leads to minor changes in the thermodynamic properties of the system, and these changes seem to be dominated by non-resonant interactions between the quantum light and matter.
提出了一种理论框架,用于计算无损耗红外(IR)微腔中分子的振转极化激元态。在所提出的方法中,可以使用任意近似来对分子的转动和振动运动进行量子处理。通过微扰处理来处理腔诱导的电子结构变化,这允许使用标准量子化学的现有成熟工具来确定电子分子性质。作为案例研究,针对不同的腔参数,计算了 IR 微腔中 H2O 的振转极化激元和相关热力学性质,并应用各种近似来描述分子自由度。自偶极相互作用对于研究的几乎所有光物质耦合强度都很重要,并且分子极化率对于由腔诱导的能级位移的正确定性行为很重要。另一方面,极化的幅度仍然很小,这证明了电子结构的腔诱导变化的微扰方法是合理的。将使用高精度变分分子模型获得的结果与使用刚性转子和谐振子近似获得的结果进行比较表明,只要振转模型适合描述无场分子,那么计算出的振转极化激元性质也应该是准确的。IR 腔的辐射模式与 H2O 的振转态之间的强光物质耦合导致系统热力学性质的微小变化,并且这些变化似乎主要由量子光与物质之间的非共振相互作用决定。