Laboratory of Biosensors and Bioanalysis (LABB), Department of Biological Chemistry and IQUIBICEN-CONICET, Science Faculty, University of Buenos Aires, Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires 1428, Argentina.
Corrosion Department, Materials Management, National Atomic Energy Commission, Av. Gral. Paz 1499 Prov. de Buenos Aires, San Martín B1650KNA, Argentina.
J Appl Microbiol. 2023 Jul 4;134(7). doi: 10.1093/jambio/lxad140.
The aim was to develop an electrochemical/optical set-up and correlate it (as validation) with other chemical and physical methods to obtain a simple and cost-effective system to study biofilm formation.
A simple microfluidic cell and methods allowed continuous monitoring of the first, critical steps of microbial attachment. We monitored sulfate-reducing bacteria (SRB) at the early stages of biofilm formation. Herein, we studied the formation and adherence of SRB consortium biofilms over an indium tin oxide (ITO) conducting surface using microbiological and chemical methods, microscopic observations [scanning electron microscopy (SEM) and optical], and electrochemical impedance spectroscopy (EIS) measurements. The SRB biofilm formation was evaluated for 30 d by SEM and EIS. Charge transfer resistance decreased when the microbial population colonized the electrode. The monitoring of early-stage biofilm formation was performed using EIS at a single frequency of 1 Hz during the first 36 h.
The simultaneous use of optical, analytical, and microbiological methods allowed us to connect the kinetics of the growth of the microbial consortium to the values obtained via the electrochemical technique. The simple setup we present here can help laboratories with limited resources to study biofilm attachment and facilitates the development of various strategies to control biofilm development in order to avoid damage to metallic structures (microbiologically influenced corrosion, MIC) or the colonization of other industrial structures and medical devices.
目的是开发一种电化学/光学装置,并将其与其他化学和物理方法相关联(作为验证),以获得一种简单且具有成本效益的系统来研究生物膜形成。
一种简单的微流控细胞和方法允许连续监测微生物附着的最初关键步骤。我们在生物膜形成的早期阶段监测硫酸盐还原菌 (SRB)。在这里,我们使用微生物学和化学方法、微观观察 [扫描电子显微镜 (SEM) 和光学] 和电化学阻抗谱 (EIS) 测量研究了在氧化铟锡 (ITO) 导电表面上形成和附着 SRB 生物膜联合体。通过 SEM 和 EIS 评估了 30 天的 SRB 生物膜形成情况。当微生物群落在电极上定殖时,电荷转移电阻降低。在最初的 36 小时内,在 1 Hz 的单一频率下使用 EIS 进行了早期生物膜形成的监测。
光学、分析和微生物学方法的同时使用使我们能够将微生物联合体的生长动力学与通过电化学技术获得的值联系起来。我们在这里提出的简单设置可以帮助资源有限的实验室研究生物膜附着,并促进开发各种策略来控制生物膜的发展,以避免金属结构的损坏(微生物影响腐蚀,MIC)或其他工业结构和医疗设备的定植。