Institut Necker-Enfants Malades (INEM), Paris, France.
INSERM U1151/CNRS UMR 8253, Paris, France.
Nat Cell Biol. 2023 Jul;25(7):975-988. doi: 10.1038/s41556-023-01171-3. Epub 2023 Jul 6.
Metabolic demands fluctuate rhythmically and rely on coordination between the circadian clock and nutrient-sensing signalling pathways, yet mechanisms of their interaction remain not fully understood. Surprisingly, we find that class 3 phosphatidylinositol-3-kinase (PI3K), known best for its essential role as a lipid kinase in endocytosis and lysosomal degradation by autophagy, has an overlooked nuclear function in gene transcription as a coactivator of the heterodimeric transcription factor and circadian driver Bmal1-Clock. Canonical pro-catabolic functions of class 3 PI3K in trafficking rely on the indispensable complex between the lipid kinase Vps34 and regulatory subunit Vps15. We demonstrate that although both subunits of class 3 PI3K interact with RNA polymerase II and co-localize with active transcription sites, exclusive loss of Vps15 in cells blunts the transcriptional activity of Bmal1-Clock. Thus, we establish non-redundancy between nuclear Vps34 and Vps15, reflected by the persistent nuclear pool of Vps15 in Vps34-depleted cells and the ability of Vps15 to coactivate Bmal1-Clock independently of its complex with Vps34. In physiology we find that Vps15 is required for metabolic rhythmicity in liver and, unexpectedly, it promotes pro-anabolic de novo purine nucleotide synthesis. We show that Vps15 activates the transcription of Ppat, a key enzyme for the production of inosine monophosphate, a central metabolic intermediate for purine synthesis. Finally, we demonstrate that in fasting, which represses clock transcriptional activity, Vps15 levels are decreased on the promoters of Bmal1 targets, Nr1d1 and Ppat. Our findings open avenues for establishing the complexity for nuclear class 3 PI3K signalling for temporal regulation of energy homeostasis.
代谢需求呈周期性波动,依赖于生物钟和营养感应信号通路的协调,但它们相互作用的机制仍不完全清楚。令人惊讶的是,我们发现 3 类磷脂酰肌醇-3-激酶(PI3K),作为内吞作用和自噬溶酶体降解的脂质激酶,在基因转录中具有被忽视的核功能,作为异二聚体转录因子和生物钟驱动因子 Bmal1-Clock 的共激活因子。3 类 PI3K 在运输中的经典促分解代谢功能依赖于脂质激酶 Vps34 和调节亚基 Vps15 之间不可或缺的复合物。我们证明,尽管 3 类 PI3K 的两个亚基都与 RNA 聚合酶 II 相互作用,并与活跃的转录位点共定位,但细胞中 Vps15 的特异性缺失会削弱 Bmal1-Clock 的转录活性。因此,我们建立了核 Vps34 和 Vps15 之间的非冗余性,这反映在 Vps34 耗尽细胞中 Vps15 的核池持续存在,以及 Vps15 能够独立于其与 Vps34 的复合物来共激活 Bmal1-Clock。在生理学上,我们发现 Vps15 是肝脏代谢节律性所必需的,而且出乎意料的是,它促进了新的合成代谢前体嘌呤核苷酸的合成。我们表明,Vps15 激活了 Ppat 的转录,Ppat 是肌苷单磷酸的关键酶,肌苷单磷酸是嘌呤合成的中心代谢中间产物。最后,我们证明在禁食状态下,抑制时钟转录活性时,Vps15 的水平在 Bmal1 靶基因 Nr1d1 和 Ppat 的启动子上降低。我们的研究结果为建立核 3 类 PI3K 信号在时间调节能量平衡方面的复杂性开辟了途径。