Xu Jiachao, Zhong Wei, Zhang Xidong, Wang Xuefei, Hong Xuekun, Yu Huogen
State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China.
China Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China.
Small. 2023 Nov;19(45):e2303960. doi: 10.1002/smll.202303960. Epub 2023 Jul 7.
Electron density manipulation of active sites in cocatalysts is of great essential to realize the optimal hydrogen adsorption/desorption behavior for constructing high-efficient H -evolution photocatalyst. Herein, a strategy about weakening metal-metal bond strength to directionally optimize the electron density of channel-sulfur(S) sites in 1T' Re Mo S cocatalyst is clarified to improve their hydrogen adsorption strength (S─H bond) for rapid H -production reaction. In this case, the ultrathin Re Mo S nanosheet is in situ anchored on the TiO surface to form Re Mo S /TiO photocatalyst by a facial molten salt method. Remarkably, numerous visual H bubbles are constantly generated on the optimal Re Mo S /TiO sample with a 10.56 mmol g h rate (apparent quantum efficiency is about 50.6%), which is 2.6 times higher than that of traditional ReS /TiO sample. Density functional theory and in situ/ex situ X-ray photoelectron spectroscopy results collectively demonstrate that the weakened Re─Re bond strength via Mo introduction can induce the formation of unique electron-deficient channel-S sites with suitable electron density, which yield thermoneutral S─H bonds to realize superior interfacial H -generation performance. This work provides fundamental guidance on purposely optimizing the electronic state of active sites by manipulating the intrinsic bonding structure, which opens an avenue for designing efficacious photocatalytic materials.
调控助催化剂活性位点的电子密度对于实现最优的氢吸附/解吸行为以构建高效析氢光催化剂至关重要。在此,阐明了一种通过削弱金属-金属键强度来定向优化1T'相ReMoS助催化剂中通道硫(S)位点电子密度的策略,以提高其氢吸附强度(S─H键)从而实现快速析氢反应。在这种情况下,通过简便的熔盐法将超薄ReMoS纳米片原位锚定在TiO表面,形成ReMoS/TiO光催化剂。值得注意的是,在最优的ReMoS/TiO样品上以10.56 mmol g⁻¹ h⁻¹的速率持续产生大量可见的氢气泡(表观量子效率约为50.6%),这比传统的ReS/TiO样品高出2.6倍。密度泛函理论以及原位/非原位X射线光电子能谱结果共同表明,通过引入Mo削弱Re─Re键强度能够诱导形成具有合适电子密度的独特缺电子通道-S位点,这些位点产生热中性的S─H键以实现优异的界面析氢性能。这项工作为通过操纵本征键结构有目的地优化活性位点的电子态提供了基础指导,为设计高效光催化材料开辟了一条途径。