State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 430070, Wuhan, P. R. China.
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 430074, Wuhan, P. R. China.
Angew Chem Int Ed Engl. 2023 Jun 19;62(25):e202304559. doi: 10.1002/anie.202304559. Epub 2023 May 10.
The interaction between a co-catalyst and photocatalyst usually induces spontaneous free-electron transfer between them, but the effect and regulation of the transfer direction on the hydrogen-adsorption energy of the active sites have not received attention. Herein, to steer the free-electron transfer in a favorable direction for weakening S-H bonds of sulfur-rich MoS , an electron-reversal strategy is proposed for the first time. The core-shell Au@MoS cocatalyst was constructed on TiO to optimize the antibonding-orbital occupancy. Research results reveal that the embedded Au can reverse the electron transfer to MoS to generate electron-rich S active sites, thus increasing the antibonding-orbital occupancy of S-H in the Au@MoS cocatalyst. Consequently, the increase in the antibonding-orbital occupancy effectively destabilizes the H 1s-p antibonding orbital and weakens the S-H bond, realizing the expedited desorption of H to rapidly generate a lot of visible H bubbles. This work delves deep into the latent effect of the photocatalyst carrier on cocatalytic activity.
助催化剂与光催化剂之间的相互作用通常会在它们之间诱导自发的自由电子转移,但自由电子转移方向对活性位的氢吸附能的影响和调节尚未受到关注。在此,为了引导有利于削弱富硫 MoS 中 S-H 键的自由电子转移,首次提出了一种电子反转策略。在 TiO 上构建了核壳结构的 Au@MoS 助催化剂,以优化反键轨道占据。研究结果表明,嵌入的 Au 可以将电子转移反转到 MoS 上,从而产生富电子 S 活性位,从而增加 Au@MoS 助催化剂中 S-H 的反键轨道占据。因此,反键轨道占据的增加有效地使 H 1s-p 反键轨道失稳,并削弱 S-H 键,从而实现 H 的快速脱附,迅速生成大量可见的 H 气泡。这项工作深入探讨了光催化剂载体对助催化活性的潜在影响。