Suppr超能文献

基于非下采样剪切波变换(NSST)域的多模态医学图像融合及其结构和光谱特征增强

Multimodal medical image fusion in NSST domain with structural and spectral features enhancement.

作者信息

Khan Sajid Ullah, Khan Fahim, Ullah Shahid, Lee Bumshik

机构信息

Multimedia Information Processing Lab, Department of Information and Communication Engineering, Chosun University, Gwangju, South Korea.

Department of Computer Engineering, Gachon University, Seongnam-si13120, South Korea.

出版信息

Heliyon. 2023 Jun 16;9(6):e17334. doi: 10.1016/j.heliyon.2023.e17334. eCollection 2023 Jun.

Abstract

For the past 25 years, medical imaging has been extensively used for clinical diagnosis. The main difficulties in medicine are accurate disease recognition and improved therapy. Using a single imaging modality to diagnose disease is challenging for clinical personnel. In this paper, a novel structural and spectral feature enhancement method in NSST Domain for multimodal medical image fusion (MMIF) is proposed. Initially, the proposed method uses the Intensity, Hue, Saturation (IHS) method to generate two pairs of images. The input images are then decomposed using the Non-Subsampled Shearlet Transform (NSST) method to obtain low frequency and high frequency sub-bands. Next, a proposed Structural Information (SI) fusion strategy is employed to Low Frequency Sub-bands (LFS's). It will enhance the structural (texture, background) information. Then, Principal Component Analysis (PCA) is employed as a fusion rule to High Frequency Sub-bands (HFS's) to obtain the pixel level information. Finally, the fused final image is obtained by employing inverse NSST and IHS. The proposed algorithm was validated using different modalities containing 120 image pairs. The qualitative and quantitative results demonstrated that the algorithm proposed in this research work outperformed numerous state-of-the-art MMIF approaches.

摘要

在过去的25年里,医学成像已被广泛用于临床诊断。医学中的主要难题是准确的疾病识别和改进治疗方法。对于临床人员来说,使用单一成像模态来诊断疾病具有挑战性。本文提出了一种在非下采样剪切波变换(NSST)域中用于多模态医学图像融合(MMIF)的新颖结构和光谱特征增强方法。首先,该方法使用强度、色调、饱和度(IHS)方法生成两对图像。然后,使用非下采样剪切波变换(NSST)方法对输入图像进行分解,以获得低频和高频子带。接下来,采用一种提出的结构信息(SI)融合策略对低频子带(LFS)进行处理。它将增强结构(纹理、背景)信息。然后,主成分分析(PCA)被用作高频子带(HFS)的融合规则,以获得像素级信息。最后,通过应用逆NSST和IHS获得融合后的最终图像。所提出的算法使用包含120对图像的不同模态进行了验证。定性和定量结果表明,本研究中提出的算法优于众多先进的MMIF方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/10320029/aaef6dae3ccd/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验