Suppr超能文献

基于 NSST 域双分支 CNN 的脑医学图像融合。

Brain Medical Image Fusion Based on Dual-Branch CNNs in NSST Domain.

机构信息

School of Information, Yunnan University, Kunming 650504, China.

出版信息

Biomed Res Int. 2020 Apr 14;2020:6265708. doi: 10.1155/2020/6265708. eCollection 2020.

Abstract

Computed tomography (CT) images show structural features, while magnetic resonance imaging (MRI) images represent brain tissue anatomy but do not contain any functional information. How to effectively combine the images of the two modes has become a research challenge. In this paper, a new framework for medical image fusion is proposed which combines convolutional neural networks (CNNs) and non-subsampled shearlet transform (NSST) to simultaneously cover the advantages of them both. This method effectively retains the functional information of the CT image and reduces the loss of brain structure information and spatial distortion of the MRI image. In our fusion framework, the initial weights integrate the pixel activity information from two source images that is generated by a dual-branch convolutional network and is decomposed by NSST. Firstly, the NSST is performed on the source images and the initial weights to obtain their low-frequency and high-frequency coefficients. Then, the first component of the low-frequency coefficients is fused by a novel fusion strategy, which simultaneously copes with two key issues in the fusion processing which are named energy conservation and detail extraction. The second component of the low-frequency coefficients is fused by the strategy that is designed according to the spatial frequency of the weight map. Moreover, the high-frequency coefficients are fused by the high-frequency components of the initial weight. Finally, the final image is reconstructed by the inverse NSST. The effectiveness of the proposed method is verified using pairs of multimodality images, and the sufficient experiments indicate that our method performs well especially for medical image fusion.

摘要

计算机断层扫描(CT)图像显示结构特征,而磁共振成像(MRI)图像代表脑组织解剖结构,但不包含任何功能信息。如何有效地结合两种模式的图像已成为研究挑战。在本文中,提出了一种新的医学图像融合框架,该框架结合卷积神经网络(CNN)和非下采样剪切波变换(NSST)来同时覆盖它们的优势。该方法有效地保留了 CT 图像的功能信息,减少了 MRI 图像的脑结构信息损失和空间变形。在我们的融合框架中,初始权值整合了来自两个源图像的像素活动信息,这些信息由双分支卷积网络生成并通过 NSST 分解。首先,对源图像和初始权值进行 NSST,以获得它们的低频和高频系数。然后,通过一种新的融合策略对低频系数的第一分量进行融合,该策略同时应对融合处理中的两个关键问题,即能量守恒和细节提取。低频系数的第二分量通过根据权值图的空间频率设计的策略进行融合。此外,高频系数通过初始权值的高频分量进行融合。最后,通过逆 NSST 重建最终图像。使用多模态图像对所提出的方法的有效性进行了验证,充分的实验表明,我们的方法表现良好,特别是对于医学图像融合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b28f/7178475/9432b28ac951/BMRI2020-6265708.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验