Li Zihao, Fouad Anthony D, Bowlin Peter D, Fan Yuying, He Siming, Chang Meng-Chuan, Du Angelica, Teng Christopher, Kassouni Alexander, Ji Hongfei, Raizen David M, Fang-Yen Christopher
Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA.
PNAS Nexus. 2023 Jul 5;2(7):pgad197. doi: 10.1093/pnasnexus/pgad197. eCollection 2023 Jul.
The nematode is one of the most widely studied organisms in biology due to its small size, rapid life cycle, and manipulable genetics. Research with depends on labor-intensive and time-consuming manual procedures, imposing a major bottleneck for many studies, especially for those involving large numbers of animals. Here, we describe a general-purpose tool, WormPicker, a robotic system capable of performing complex genetic manipulations and other tasks by imaging, phenotyping, and transferring on standard agar media. Our system uses a motorized stage to move an imaging system and a robotic arm over an array of agar plates. Machine vision tools identify animals and assay developmental stage, morphology, sex, expression of fluorescent reporters, and other phenotypes. Based on the results of these assays, the robotic arm selectively transfers individual animals using an electrically self-sterilized wire loop, with the aid of machine vision and electrical capacitance sensing. Automated manipulation shows reliability and throughput comparable with standard manual methods. We developed software to enable the system to autonomously carry out complex protocols. To validate the effectiveness and versatility of our methods, we used the system to perform a collection of common procedures, including genetic crossing, genetic mapping, and genomic integration of a transgene. Our robotic system will accelerate research and open possibilities for performing genetic and pharmacological screens that would be impractical using manual methods.
线虫由于其体型小、生命周期短和可操作的遗传学特性,成为生物学领域研究最为广泛的生物之一。对线虫的研究依赖于劳动强度大且耗时的手工操作,这对许多研究,尤其是涉及大量动物的研究而言,构成了一个主要瓶颈。在此,我们描述了一种通用工具——线虫挑选器(WormPicker),这是一个能够通过成像、表型分析以及在标准琼脂培养基上转移线虫来执行复杂基因操作和其他任务的机器人系统。我们的系统使用电动载物台在琼脂平板阵列上移动成像系统和机械臂。机器视觉工具可识别线虫并分析其发育阶段、形态、性别、荧光报告基因的表达以及其他表型。基于这些分析结果,机械臂借助机器视觉和电容感应,使用电自消毒的金属丝环选择性地转移单个线虫。自动化线虫操作显示出与标准手工方法相当的可靠性和通量。我们开发了软件以使系统能够自主执行复杂的实验方案。为了验证我们方法的有效性和通用性,我们使用该系统执行了一系列常见的线虫操作,包括遗传杂交、基因定位以及转基因的基因组整合。我们的机器人系统将加速线虫研究,并为开展使用手工方法不切实际的遗传和药理筛选开辟可能性。