Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), and Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.
Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China.
J Chem Phys. 2023 Jul 7;159(1). doi: 10.1063/5.0152107.
We report a first-principles study on the electronic and optical properties of delafossite CuMO2 (M = Al, Ga and In) using the recently developed hybrid functional pseudopotentials. We obtain trends of the fundamental and optical gaps with increasing M-atomic number, in agreement with experiment. In particular, we reproduce the experimental fundamental gap, optical gap, and Cu 3d energy of CuAlO2 almost perfectly, in contrast to the various calculations that have traditionally focused on valence electrons, which are unable to reproduce these key properties simultaneously. Since all that distinguishes our calculations is simply the use of a different Cu pseudopotential with a partially exact exchange interaction, this suggests that an inappropriate description of the electron-ion interaction may play a role in the density functional theory bandgap problem for CuAlO2. Applying Cu hybrid pseudopotentials to CuGaO2 and CuInO2 is also effective, yielding optical gaps that are very close to experiment. However, due to the limited experimental data for these two oxides, a comprehensive comparison as that for CuAlO2 is not possible. Furthermore, our calculations yield large exciton binding energies for delafossite CuMO2, all around 1 eV.
我们使用最近开发的杂化泛函赝势对铜镧石 CuMO2(M = Al、Ga 和 In)的电子和光学性质进行了第一性原理研究。我们得到了基本和光学带隙随 M 原子序数增加的趋势,与实验结果一致。特别是,我们几乎完美地再现了 CuAlO2 的实验基本带隙、光学带隙和 Cu 3d 能,而传统上专注于价电子的各种计算则无法同时再现这些关键性质。由于我们的计算唯一不同之处只是使用了具有部分精确交换相互作用的不同 Cu 赝势,这表明电子-离子相互作用的不恰当描述可能在 CuAlO2 的密度泛函理论带隙问题中起作用。将 Cu 杂化赝势应用于 CuGaO2 和 CuInO2 也是有效的,得到的光学带隙非常接近实验值。然而,由于这两种氧化物的实验数据有限,因此无法像 CuAlO2 那样进行全面比较。此外,我们的计算得到了铜镧石 CuMO2 的大激子结合能,约为 1 eV。