Suppr超能文献

基于自适应窗口和深度神经网络的心电图逐拍分段。

Beat-wise segmentation of electrocardiogram using adaptive windowing and deep neural network.

机构信息

Biomedical Information Engineering Lab, The University of Aizu, Fukushima, 965-8580, Japan.

Information System Engineering Inc.(ISE), Tokyo, 169-0075, Japan.

出版信息

Sci Rep. 2023 Jul 7;13(1):11039. doi: 10.1038/s41598-023-37773-y.

Abstract

Timely detection of anomalies and automatic interpretation of an electrocardiogram (ECG) play a crucial role in many healthcare applications, such as patient monitoring and post treatments. Beat-wise segmentation is one of the essential steps in ensuring the confidence and fidelity of many automatic ECG classification methods. In this sense, we present a reliable ECG beat segmentation technique using a CNN model with an adaptive windowing algorithm. The proposed adaptive windowing algorithm can recognise cardiac cycle events and perform segmentation, including regular and irregular beats from an ECG signal with satisfactorily accurate boundaries.The proposed algorithm was evaluated quantitatively and qualitatively based on the annotations provided with the datasets and beat-wise manual inspection. The algorithm performed satisfactorily well for the MIT-BIH dataset with a 99.08% accuracy and a 99.08% of F1-score in detecting heartbeats along with a 99.25% of accuracy in determining correct boundaries. The proposed method successfully detected heartbeats from the European S-T database with a 98.3% accuracy and 97.4% precision. The algorithm showed 99.4% of accuracy and precision for Fantasia database. In summary, the algorithm's overall performance on these three datasets suggests a high possibility of applying this algorithm in various applications in ECG analysis, including clinical applications with greater confidence.

摘要

及时检测异常和自动解释心电图(ECG)在许多医疗保健应用中起着至关重要的作用,例如患者监测和治疗后。节拍分段是确保许多自动 ECG 分类方法的置信度和保真度的基本步骤之一。在这种意义下,我们提出了一种使用 CNN 模型和自适应窗口算法的可靠 ECG 节拍分段技术。所提出的自适应窗口算法可以识别心脏周期事件并执行分段,包括从 ECG 信号中具有令人满意的准确边界的规则和不规则节拍。该算法根据数据集提供的注释和节拍级别的手动检查进行了定量和定性评估。该算法在 MIT-BIH 数据集上表现出色,准确率为 99.08%,F1 得分为 99.08%,检测心跳的准确率为 99.25%,确定正确边界的准确率为 99.25%。该方法成功地从欧洲 S-T 数据库中以 98.3%的准确率和 97.4%的精度检测到心跳。该算法在 Fantasia 数据库中的准确率和精度分别为 99.4%。总的来说,该算法在这三个数据集上的整体性能表明,该算法有可能在 ECG 分析的各种应用中得到更广泛的应用,包括更有信心的临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7fa/10328981/31a6313ce35a/41598_2023_37773_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验