Suppr超能文献

基于多尺度数学形态学的可穿戴 ECG 设备在体域网中的 QRS 检测。

QRS Detection Based on Multiscale Mathematical Morphology for Wearable ECG Devices in Body Area Networks.

出版信息

IEEE Trans Biomed Circuits Syst. 2009 Aug;3(4):220-8. doi: 10.1109/TBCAS.2009.2020093.

Abstract

A novel wearable electrocardiograph (ECG) QRS detection algorithm for wearable ECG devices in body area networks is presented in this paper, which utilizes the multistage multiscale mathematical morphology filtering to suppress the impulsive noise and uses the multiframe differential modulus accumulation to remove the baseline drift and enhance the signal. The proposed algorithm, verified with data from the MIT/BIH Arrhythmia Database and wearable ECG devices, achieves an average QRS detection rate of 99.61%, a sensitivity of 99.81%, and a positive prediction of 99.80%. It compares favorably to the published methods.

摘要

本文提出了一种新的可穿戴心电设备在体域网中的心电信号 QRS 检测算法,该算法利用多尺度多相数学形态滤波来抑制脉冲噪声,利用多帧差分模积累去除基线漂移并增强信号。该算法通过麻省理工学院/比哈里心律失常数据库和可穿戴心电设备的数据进行验证,平均 QRS 检测率为 99.61%,灵敏度为 99.81%,阳性预测值为 99.80%。与已发表的方法相比,该算法具有优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验