Suppr超能文献

基于多尺度数学形态学的可穿戴 ECG 设备在体域网中的 QRS 检测。

QRS Detection Based on Multiscale Mathematical Morphology for Wearable ECG Devices in Body Area Networks.

出版信息

IEEE Trans Biomed Circuits Syst. 2009 Aug;3(4):220-8. doi: 10.1109/TBCAS.2009.2020093.

Abstract

A novel wearable electrocardiograph (ECG) QRS detection algorithm for wearable ECG devices in body area networks is presented in this paper, which utilizes the multistage multiscale mathematical morphology filtering to suppress the impulsive noise and uses the multiframe differential modulus accumulation to remove the baseline drift and enhance the signal. The proposed algorithm, verified with data from the MIT/BIH Arrhythmia Database and wearable ECG devices, achieves an average QRS detection rate of 99.61%, a sensitivity of 99.81%, and a positive prediction of 99.80%. It compares favorably to the published methods.

摘要

本文提出了一种新的可穿戴心电设备在体域网中的心电信号 QRS 检测算法,该算法利用多尺度多相数学形态滤波来抑制脉冲噪声,利用多帧差分模积累去除基线漂移并增强信号。该算法通过麻省理工学院/比哈里心律失常数据库和可穿戴心电设备的数据进行验证,平均 QRS 检测率为 99.61%,灵敏度为 99.81%,阳性预测值为 99.80%。与已发表的方法相比,该算法具有优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验