Suppr超能文献

使用机器学习和深度学习技术评估白内障手术视频中的相位自动识别。

Assessment of Automated Identification of Phases in Videos of Cataract Surgery Using Machine Learning and Deep Learning Techniques.

机构信息

Department of Computer Science, Johns Hopkins University, Baltimore, Maryland.

Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, Maryland.

出版信息

JAMA Netw Open. 2019 Apr 5;2(4):e191860. doi: 10.1001/jamanetworkopen.2019.1860.

Abstract

IMPORTANCE

Competence in cataract surgery is a public health necessity, and videos of cataract surgery are routinely available to educators and trainees but currently are of limited use in training. Machine learning and deep learning techniques can yield tools that efficiently segment videos of cataract surgery into constituent phases for subsequent automated skill assessment and feedback.

OBJECTIVE

To evaluate machine learning and deep learning algorithms for automated phase classification of manually presegmented phases in videos of cataract surgery.

DESIGN, SETTING, AND PARTICIPANTS: This was a cross-sectional study using a data set of videos from a convenience sample of 100 cataract procedures performed by faculty and trainee surgeons in an ophthalmology residency program from July 2011 to December 2017. Demographic characteristics for surgeons and patients were not captured. Ten standard labels in the procedure and 14 instruments used during surgery were manually annotated, which served as the ground truth.

EXPOSURES

Five algorithms with different input data: (1) a support vector machine input with cross-sectional instrument label data; (2) a recurrent neural network (RNN) input with a time series of instrument labels; (3) a convolutional neural network (CNN) input with cross-sectional image data; (4) a CNN-RNN input with a time series of images; and (5) a CNN-RNN input with time series of images and instrument labels. Each algorithm was evaluated with 5-fold cross-validation.

MAIN OUTCOMES AND MEASURES

Accuracy, area under the receiver operating characteristic curve, sensitivity, specificity, and precision.

RESULTS

Unweighted accuracy for the 5 algorithms ranged between 0.915 and 0.959. Area under the receiver operating characteristic curve for the 5 algorithms ranged between 0.712 and 0.773, with small differences among them. The area under the receiver operating characteristic curve for the image-only CNN-RNN (0.752) was significantly greater than that of the CNN with cross-sectional image data (0.712) (difference, -0.040; 95% CI, -0.049 to -0.033) and the CNN-RNN with images and instrument labels (0.737) (difference, 0.016; 95% CI, 0.014 to 0.018). While specificity was uniformly high for all phases with all 5 algorithms (range, 0.877 to 0.999), sensitivity ranged between 0.005 (95% CI, 0.000 to 0.015) for the support vector machine for wound closure (corneal hydration) and 0.974 (95% CI, 0.957 to 0.991) for the RNN for main incision. Precision ranged between 0.283 and 0.963.

CONCLUSIONS AND RELEVANCE

Time series modeling of instrument labels and video images using deep learning techniques may yield potentially useful tools for the automated detection of phases in cataract surgery procedures.

摘要

重要性

白内障手术能力是公共卫生的必要条件,有关白内障手术的视频通常可供教育者和学员使用,但目前在培训中的使用有限。机器学习和深度学习技术可生成工具,将白内障手术视频高效地分割成各个阶段,以便随后进行自动技能评估和反馈。

目的

评估机器学习和深度学习算法在白内障手术视频中手动分段的阶段的自动分类。

设计、环境和参与者:这是一项使用 2011 年 7 月至 2017 年 12 月期间由眼科住院医师计划中的教员和学员外科医生进行的 100 例白内障手术的便利样本视频数据集的横断面研究。外科医生和患者的人口统计学特征未被捕获。手术过程中的 10 个标准标签和 14 个使用的器械被手动注释,作为地面实况。

暴露因素

具有不同输入数据的 5 种算法:(1)带有横截面器械标签数据的支持向量机输入;(2)带有器械标签时间序列的递归神经网络(RNN)输入;(3)带有横截面图像数据的卷积神经网络(CNN)输入;(4)带有图像时间序列的 CNN-RNN 输入;以及(5)带有时间序列图像和器械标签的 CNN-RNN 输入。使用 5 折交叉验证评估每个算法。

主要结果和测量

准确性、受试者工作特征曲线下面积、敏感度、特异性和精密度。

结果

5 种算法的未加权准确性在 0.915 至 0.959 之间。5 种算法的受试者工作特征曲线下面积在 0.712 至 0.773 之间,彼此之间差异较小。仅图像的 CNN-RNN(0.752)的受试者工作特征曲线下面积明显大于具有横截面图像数据的 CNN(0.712)(差异,-0.040;95%置信区间,-0.049 至 -0.033)和具有图像和器械标签的 CNN-RNN(0.737)(差异,0.016;95%置信区间,0.014 至 0.018)。虽然所有 5 种算法的所有阶段的特异性均保持较高(范围为 0.877 至 0.999),但敏感性范围为 0.005(95%置信区间,0.000 至 0.015),用于支持伤口闭合(角膜水合作用)的支持向量机,和 0.974(95%置信区间,0.957 至 0.991),用于 RNN 进行主切口。精度范围在 0.283 至 0.963 之间。

结论和相关性

使用深度学习技术对器械标签和视频图像进行时间序列建模可能会为白内障手术过程中阶段的自动检测生成有用的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e9d/6450320/a1c384ffb5af/jamanetwopen-2-e191860-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验