Suppr超能文献

基于肝脏和脾脏超声图像对的分层暹罗网络用于无创性肝纤维化分期。

A Hierarchical Siamese Network for Noninvasive Staging of Liver Fibrosis Based on US Image Pairs of the Liver and Spleen.

机构信息

College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.

Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China.

出版信息

Sensors (Basel). 2023 Jun 8;23(12):5450. doi: 10.3390/s23125450.

Abstract

Due to the heterogeneity of ultrasound (US) images and the indeterminate US texture of liver fibrosis (LF), automatic evaluation of LF based on US images is still challenging. Thus, this study aimed to propose a hierarchical Siamese network that combines the information from liver and spleen US images to improve the accuracy of LF grading. There were two stages in the proposed method. In stage one, a dual-channel Siamese network was trained to extract features from paired liver and spleen patches that were cropped from US images to avoid vascular interferences. Subsequently, the L1 distance was used to quantify the liver-spleen differences (LSDs). In stage two, the pretrained weights from stage one were transferred into the Siamese feature extractor of the LF staging model, and a classifier was trained using the fusion of the liver and LSD features for LF staging. This study was retrospectively conducted on US images of 286 patients with histologically proven liver fibrosis stages. Our method achieved a precision and sensitivity of 93.92% and 91.65%, respectively, for cirrhosis (S4) diagnosis, which is about 8% higher than that of the baseline model. The accuracy of the advanced fibrosis (≥S3) diagnosis and the multi-staging of fibrosis (≤S2 vs. S3 vs. S4) both improved about 5% to reach 90.40% and 83.93%, respectively. This study proposed a novel method that combined hepatic and splenic US images and improved the accuracy of LF staging, which indicates the great potential of liver-spleen texture comparison in noninvasive assessment of LF based on US images.

摘要

由于超声(US)图像的异质性和肝纤维化(LF)的不确定 US 纹理,基于 US 图像的 LF 自动评估仍然具有挑战性。因此,本研究旨在提出一种层次暹罗网络,该网络结合了来自肝和脾 US 图像的信息,以提高 LF 分级的准确性。该方法有两个阶段。在第一阶段,训练了一个双通道暹罗网络,从从 US 图像中裁剪出的配对肝和脾补丁中提取特征,以避免血管干扰。随后,使用 L1 距离量化肝脾差异(LSD)。在第二阶段,将第一阶段的预训练权重转移到 LF 分期模型的暹罗特征提取器中,并使用肝和 LSD 特征的融合训练分类器进行 LF 分期。这项研究是对 286 名经组织学证实的肝纤维化分期患者的 US 图像进行的回顾性研究。我们的方法在肝硬化(S4)诊断方面的精度和灵敏度分别达到 93.92%和 91.65%,比基线模型高约 8%。先进纤维化(≥S3)诊断和纤维化多分期(≤S2 与 S3 与 S4)的准确性均提高了约 5%,分别达到 90.40%和 83.93%。本研究提出了一种新的方法,该方法结合了肝和脾 US 图像,并提高了 LF 分期的准确性,这表明在基于 US 图像的 LF 无创评估中,肝脾纹理比较具有很大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc45/10302592/4759bd3eac43/sensors-23-05450-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验