Suppr超能文献

利用超声背向散射射频信号和一维卷积神经网络评估肝纤维化

Evaluation of Hepatic Fibrosis Using Ultrasound Backscattered Radiofrequency Signals and One-Dimensional Convolutional Neural Networks.

作者信息

Huang Yong, Zeng Yan, Bin Guangyu, Ding Qiying, Wu Shuicai, Tai Dar-In, Tsui Po-Hsiang, Zhou Zhuhuang

机构信息

Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.

Department of Ultrasound, BJUT Hospital, Beijing University of Technology, Beijing 100124, China.

出版信息

Diagnostics (Basel). 2022 Nov 17;12(11):2833. doi: 10.3390/diagnostics12112833.

Abstract

The early detection of hepatic fibrosis is of critical importance. Ultrasound backscattered radiofrequency signals from the liver contain abundant information about its microstructure. We proposed a method for characterizing human hepatic fibrosis using one-dimensional convolutional neural networks (CNNs) based on ultrasound backscattered signals. The proposed CNN model was composed of four one-dimensional convolutional layers, four one-dimensional max-pooling layers, and four fully connected layers. Ultrasound radiofrequency signals collected from 230 participants (F0: 23; F1: 46; F2: 51; F3: 49; F4: 61) with a 3-MHz transducer were analyzed. Liver regions of interest (ROIs) that contained most of the liver ultrasound backscattered signals were manually delineated using B-mode images reconstructed from the backscattered signals. ROI signals were normalized and augmented by using a sliding window technique. After data augmentation, the radiofrequency signal segments were divided into training sets, validation sets and test sets at a ratio of 80%:10%:10%. In the test sets, the proposed algorithm produced an area under the receive operating characteristic curve of 0.933 (accuracy: 91.30%; sensitivity: 92.00%; specificity: 90.48%), 0.997 (accuracy: 94.29%; sensitivity: 94.74%; specificity: 93.75%), 0.818 (accuracy: 75.00%; sensitivity: 69.23%; specificity: 81.82%), and 0.934 (accuracy: 91.67%; sensitivity: 88.89%; specificity: 94.44%) for diagnosis liver fibrosis stage ≥F1, ≥F2, ≥F3, and ≥F4, respectively. Experimental results indicated that the proposed deep learning algorithm based on ultrasound backscattered signals yields a satisfying performance when diagnosing hepatic fibrosis stages. The proposed method may be used as a new quantitative ultrasound approach to characterizing hepatic fibrosis.

摘要

肝纤维化的早期检测至关重要。肝脏的超声背向散射射频信号包含有关其微观结构的丰富信息。我们提出了一种基于超声背向散射信号,使用一维卷积神经网络(CNN)来表征人类肝纤维化的方法。所提出的CNN模型由四个一维卷积层、四个一维最大池化层和四个全连接层组成。对使用3MHz换能器从230名参与者(F0:23例;F1:46例;F2:51例;F3:49例;F4:61例)收集的超声射频信号进行了分析。使用从背向散射信号重建的B模式图像手动勾勒出包含大部分肝脏超声背向散射信号的肝脏感兴趣区域(ROI)。ROI信号通过滑动窗口技术进行归一化和增强。数据增强后,射频信号段按80%:10%:10%的比例分为训练集、验证集和测试集。在测试集中, 对于诊断肝纤维化阶段≥F1、≥F2、≥F3和≥F4,所提出的算法分别产生了0.933的接收操作特征曲线下面积(准确率:91.30%;灵敏度:92.00%;特异性:90.48%)、0.997(准确率:94.29%;灵敏度:94.74%;特异性:93.75%)、0.818(准确率:75.00%;灵敏度:69.23%;特异性:81.82%)和0.934(准确率:91.67%;灵敏度:88.89%;特异性:94.44%)。实验结果表明,所提出的基于超声背向散射信号的深度学习算法在诊断肝纤维化阶段时具有令人满意的性能。所提出的方法可作为一种新的定量超声方法来表征肝纤维化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b7/9689172/ada4de477478/diagnostics-12-02833-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验