Suppr超能文献

基于预训练 ResNet50 和多项式朴素贝叶斯的自主人脸分类在线自训练系统。

Autonomous Face Classification Online Self-Training System Using Pretrained ResNet50 and Multinomial Naïve Bayes.

机构信息

Research and Development Center, Netrix S.A., 20-704 Lublin, Poland.

Department of Organization of Enterprise, Faculty of Management, Lublin University of Technology, 20-618 Lublin, Poland.

出版信息

Sensors (Basel). 2023 Jun 14;23(12):5554. doi: 10.3390/s23125554.

Abstract

This paper presents a novel, autonomous learning system working in real-time for face recognition. Multiple convolutional neural networks for face recognition tasks are available; however, these networks need training data and a relatively long training process as the training speed depends on hardware characteristics. Pretrained convolutional neural networks could be useful for encoding face images (after classifier layers are removed). This system uses a pretrained ResNet50 model to encode face images from a camera and the Multinomial Naïve Bayes for autonomous training in the real-time classification of persons. Faces of several persons visible in a camera are tracked using special cognitive tracking agents who deal with machine learning models. After a face in a new position of the frame appears (in a place where there was no face in the previous frames), the system checks if it is novel or not using a novelty detection algorithm based on an SVM classifier; if it is unknown, the system automatically starts training. As a result of the conducted experiments, one can conclude that good conditions provide assurance that the system can learn the faces of a new person who appears in the frame correctly. Based on our research, we can conclude that the critical element of this system working is the novelty detection algorithm. If false novelty detection works, the system can assign two or more different identities or classify a new person into one of the existing groups.

摘要

本文提出了一种新颖的、实时工作的自主学习人脸识别系统。有多种用于人脸识别任务的卷积神经网络,但这些网络需要训练数据和相对较长的训练过程,因为训练速度取决于硬件特性。预训练的卷积神经网络对于编码人脸图像(在移除分类器层之后)可能很有用。该系统使用预训练的 ResNet50 模型对来自摄像机的人脸图像进行编码,然后使用多项式朴素贝叶斯在实时分类人员的自主训练中使用。使用特殊的认知跟踪代理跟踪摄像机中可见的多个人脸,这些代理处理机器学习模型。当一个新的人脸出现在一个新的帧位置(在前几个帧中没有人脸的地方)时,系统会使用基于 SVM 分类器的新颖性检测算法检查它是否是未知的;如果是未知的,系统会自动开始训练。通过进行的实验,可以得出结论,良好的条件可以保证系统能够正确学习出现在帧中的新人脸。基于我们的研究,可以得出结论,该系统工作的关键要素是新颖性检测算法。如果虚假新颖性检测起作用,系统可以将两个或更多不同的身份分配给一个新的人,或者将新的人分类到现有的一个组中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15ae/10304833/87eb7b4651d6/sensors-23-05554-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验