Suppr超能文献

基于扩展卡尔曼粒子滤波器的功率碳化硅金属氧化物半导体场效应晶体管剩余使用寿命预测

Remaining Useful Lifetime Prediction Based on Extended Kalman Particle Filter for Power SiC MOSFETs.

作者信息

Wu Wei, Gu Yongqian, Yu Mingkang, Gao Chongbing, Chen Yong

机构信息

School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.

出版信息

Micromachines (Basel). 2023 Apr 12;14(4):836. doi: 10.3390/mi14040836.

Abstract

Nowadays, the performance of silicon-based devices is almost approaching the physical limit of their materials, which have difficulty meeting the needs of modern high-power applications. The SiC MOSFET, as one of the important third-generation wide bandgap power semiconductor devices, has received extensive attention. However, numerous specific reliability issues exist for SiC MOSFETs, such as bias temperature instability, threshold voltage drift, and reduced short-circuit robustness. The remaining useful life (RUL) prediction of SiC MOSFETs has become the focus of device reliability research. In this paper, a RUL estimation method using the Extended Kalman Particle Filter (EPF) based on an on-state voltage degradation model for SiC MOSFETs is proposed. A new power cycling test platform is designed to monitor the on-state voltage of SiC MOSFETs used as the failure precursor. The experimental results show that the RUL prediction error decreases from 20.5% of the traditional Particle Filter algorithm (PF) algorithm to 11.5% of EPF with 40% data input. The life prediction accuracy is therefore improved by about 10%.

摘要

如今,硅基器件的性能几乎已接近其材料的物理极限,难以满足现代高功率应用的需求。碳化硅金属氧化物半导体场效应晶体管(SiC MOSFET)作为重要的第三代宽带隙功率半导体器件之一,受到了广泛关注。然而,SiC MOSFET存在诸多特定的可靠性问题,如偏置温度不稳定性、阈值电压漂移以及短路鲁棒性降低等。SiC MOSFET的剩余使用寿命(RUL)预测已成为器件可靠性研究的焦点。本文提出了一种基于SiC MOSFET通态电压退化模型的扩展卡尔曼粒子滤波器(EPF)的RUL估计方法。设计了一个新的功率循环测试平台,以监测用作故障先兆的SiC MOSFET的通态电压。实验结果表明,在输入40%数据的情况下,RUL预测误差从传统粒子滤波器算法(PF)的20.5%降至EPF的11.5%。因此,寿命预测精度提高了约10%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f214/10146959/1b6bf0555bc7/micromachines-14-00836-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验