Department of Methodology and Statistics, Tilburg University, Tilburg, The Netherlands.
Res Synth Methods. 2023 Sep;14(5):768-773. doi: 10.1002/jrsm.1654. Epub 2023 Jul 8.
The partial correlation coefficient (PCC) is used to quantify the linear relationship between two variables while taking into account/controlling for other variables. Researchers frequently synthesize PCCs in a meta-analysis, but two of the assumptions of the common equal-effect and random-effects meta-analysis model are by definition violated. First, the sampling variance of the PCC cannot assumed to be known, because the sampling variance is a function of the PCC. Second, the sampling distribution of each primary study's PCC is not normal since PCCs are bounded between -1 and 1. I advocate applying the Fisher's z transformation analogous to applying Fisher's z transformation for Pearson correlation coefficients, because the Fisher's z transformed PCC is independent of the sampling variance and its sampling distribution more closely follows a normal distribution. Reproducing a simulation study by Stanley and Doucouliagos and adding meta-analyses based on Fisher's z transformed PCCs shows that the meta-analysis based on Fisher's z transformed PCCs had lower bias and root mean square error than meta-analyzing PCCs. Hence, meta-analyzing Fisher's z transformed PCCs is a viable alternative to meta-analyzing PCCs, and I recommend to accompany any meta-analysis based on PCCs with one using Fisher's z transformed PCCs to assess the robustness of the results.
偏相关系数(PCC)用于量化两个变量之间的线性关系,同时考虑/控制其他变量。研究人员经常在荟萃分析中综合 PCC,但常用的等效应和随机效应荟萃分析模型的两个假设从定义上就被违反了。首先,PCC 的抽样方差不能假定为已知,因为抽样方差是 PCC 的函数。其次,每个原始研究的 PCC 的抽样分布不是正态的,因为 PCC 被限制在-1 和 1 之间。我主张应用类似于对 Pearson 相关系数应用 Fisher's z 变换的 Fisher's z 变换,因为 Fisher's z 变换后的 PCC 与抽样方差无关,其抽样分布更接近正态分布。重现 Stanley 和 Doucouliagos 的模拟研究并添加基于 Fisher's z 变换的 PCC 的荟萃分析表明,基于 Fisher's z 变换的 PCC 的荟萃分析比分析 PCC 的荟萃分析具有更低的偏差和均方根误差。因此,分析 Fisher's z 变换的 PCC 是分析 PCC 的一种可行替代方法,我建议在任何基于 PCC 的荟萃分析中,都应同时使用 Fisher's z 变换的 PCC 来评估结果的稳健性。