Suppr超能文献

猪主动脉骨折。第 2 部分:有限元建模与逆参数识别。

Fracture of porcine aorta. Part 2: FEM modelling and inverse parameter identification.

机构信息

Solid Mechanics, Department of Engineering Mechanics, KTH Royal Institute of Technology, Sweden.

Solid Mechanics, Department of Engineering Mechanics, KTH Royal Institute of Technology, Sweden.

出版信息

Acta Biomater. 2023 Sep 1;167:158-170. doi: 10.1016/j.actbio.2023.06.020. Epub 2023 Jul 7.

Abstract

The mechanics of vascular tissue, particularly its fracture properties, are crucial in the onset and progression of vascular diseases. Vascular tissue properties are complex, and the identification of fracture mechanical properties relies on robust and efficient numerical tools. In this study, we propose a parameter identification pipeline to extract tissue properties from force-displacement and digital image correlation (DIC) data. The data has been acquired by symconCT testing porcine aorta wall specimens. Vascular tissue is modelled as a non-linear viscoelastic isotropic solid, and an isotropic cohesive zone model describes tissue fracture. The model closely replicated the experimental observations and identified the fracture energies of 1.57±0.82 kJ m and 0.96±0.34 kJ m for rupturing the porcine aortic media along the circumferential and axial directions, respectively. The identified strength was always below 350 kPa, a value significantly lower than identified through classical protocols, such as simple tension, and sheds new light on the resilience of the aorta. Further refinements to the model, such as considering rate effects in the fracture process zone and tissue anisotropy, could have improved the simulation results. STATEMENT OF SIGNIFICANCE: This paper identified porcine aorta's biomechanical properties using data acquired through a previously developed experimental protocol, the symmetry-constraint compact tension test. An implicit finite element method model mimicked the test, and a two-step approach identified the material's elastic and fracture properties directly from force-displacement curves and digital image correlation-based strain measurements. Our findings show a lower strength of the abdominal aorta as compared to the literature, which may have significant implications for the clinical evaluation of the risk of aortic rupture.

摘要

血管组织的力学特性,特别是其断裂特性,在血管疾病的发生和发展中至关重要。血管组织特性复杂,断裂力学特性的识别依赖于稳健高效的数值工具。在这项研究中,我们提出了一种参数识别管道,从力-位移和数字图像相关(DIC)数据中提取组织特性。这些数据是通过 symconCT 测试猪主动脉壁标本获得的。血管组织被建模为非线性粘弹性各向同性固体,各向同性内聚区模型描述了组织断裂。该模型很好地复制了实验观察结果,并确定了猪主动脉中层在圆周和轴向方向上断裂的能量分别为 1.57±0.82kJ/m 和 0.96±0.34kJ/m。识别出的强度始终低于 350kPa,这一值明显低于通过简单拉伸等经典方案识别出的强度,这为主动脉的弹性提供了新的认识。进一步改进模型,例如考虑断裂过程区和组织各向异性中的速率效应,可能会提高模拟结果。

意义声明

本文使用通过先前开发的实验方案(对称约束紧凑拉伸测试)获得的数据来识别猪主动脉的生物力学特性。隐式有限元方法模型模拟了测试,两步法直接从力-位移曲线和基于数字图像相关的应变测量中识别材料的弹性和断裂特性。我们的研究结果表明,与文献相比,腹主动脉的强度较低,这可能对主动脉破裂风险的临床评估有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验