Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
Paul G. Allen School for Global Health, Washington State University, Pullman, WA, 99164, USA.
Sci Rep. 2023 Jul 8;13(1):11067. doi: 10.1038/s41598-023-38074-0.
In recent years, the reports of Kyasanur forest disease (KFD) breaking endemic barriers by spreading to new regions and crossing state boundaries is alarming. Effective disease surveillance and reporting systems are lacking for this emerging zoonosis, hence hindering control and prevention efforts. We compared time-series models using weather data with and without Event-Based Surveillance (EBS) information, i.e., news media reports and internet search trends, to predict monthly KFD cases in humans. We fitted Extreme Gradient Boosting (XGB) and Long Short Term Memory models at the national and regional levels. We utilized the rich epidemiological data from endemic regions by applying Transfer Learning (TL) techniques to predict KFD cases in new outbreak regions where disease surveillance information was scarce. Overall, the inclusion of EBS data, in addition to the weather data, substantially increased the prediction performance across all models. The XGB method produced the best predictions at the national and regional levels. The TL techniques outperformed baseline models in predicting KFD in new outbreak regions. Novel sources of data and advanced machine-learning approaches, e.g., EBS and TL, show great potential towards increasing disease prediction capabilities in data-scarce scenarios and/or resource-limited settings, for better-informed decisions in the face of emerging zoonotic threats.
近年来,基孔肯雅热(KFD)突破地方性障碍向新地区传播并跨越州界的报告令人震惊。这种新出现的人畜共患病缺乏有效的疾病监测和报告系统,因此阻碍了控制和预防工作。我们比较了使用天气数据和使用基于事件的监测(EBS)信息(即新闻媒体报道和互联网搜索趋势)的时间序列模型,以预测人类每月的 KFD 病例。我们在国家和地区层面拟合了极端梯度提升(XGB)和长短时记忆模型。我们通过应用迁移学习(TL)技术,利用来自疫区的丰富流行病学数据,在疾病监测信息稀缺的新暴发地区预测 KFD 病例。总的来说,除了天气数据外,还包括 EBS 数据,这大大提高了所有模型的预测性能。XGB 方法在国家和地区层面产生了最佳预测。TL 技术在预测新暴发地区的 KFD 方面优于基线模型。新的数据来源和先进的机器学习方法,例如 EBS 和 TL,在数据稀缺或资源有限的情况下提高疾病预测能力方面显示出巨大的潜力,以便在面对新出现的人畜共患病威胁时做出更明智的决策。