Keshavamurthy Ravikiran, Pazdernik Karl T, Ham Colby, Dixon Samuel, Erwin Samantha, Charles Lauren E
Artificial Intelligence and Data Analytics Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, United States.
Paul G. Allen School for Global Health, Washington State University, Pullman, WA, United States.
JMIR Public Health Surveill. 2025 Mar 21;11:e59971. doi: 10.2196/59971.
Infectious diseases (IDs) have a significant detrimental impact on global health. Timely and accurate ID forecasting can result in more informed implementation of control measures and prevention policies.
To meet the operational decision-making needs of real-world circumstances, we aimed to build a standardized, reliable, and trustworthy ID forecasting pipeline and visualization dashboard that is generalizable across a wide range of modeling techniques, IDs, and global locations.
We forecasted 6 diverse, zoonotic diseases (brucellosis, campylobacteriosis, Middle East respiratory syndrome, Q fever, tick-borne encephalitis, and tularemia) across 4 continents and 8 countries. We included a wide range of statistical, machine learning, and deep learning models (n=9) and trained them on a multitude of features (average n=2326) within the One Health landscape, including demography, landscape, climate, and socioeconomic factors. The pipeline and dashboard were created in consideration of crucial operational metrics-prediction accuracy, computational efficiency, spatiotemporal generalizability, uncertainty quantification, and interpretability-which are essential to strategic data-driven decisions.
While no single best model was suitable for all disease, region, and country combinations, our ensemble technique selects the best-performing model for each given scenario to achieve the closest prediction. For new or emerging diseases in a region, the ensemble model can predict how the disease may behave in the new region using a pretrained model from a similar region with a history of that disease. The data visualization dashboard provides a clean interface of important analytical metrics, such as ID temporal patterns, forecasts, prediction uncertainties, and model feature importance across all geographic locations and disease combinations.
As the need for real-time, operational ID forecasting capabilities increases, this standardized and automated platform for data collection, analysis, and reporting is a major step forward in enabling evidence-based public health decisions and policies for the prevention and mitigation of future ID outbreaks.
传染病对全球健康有重大不利影响。及时、准确的传染病预测能够使控制措施和预防政策的实施更加明智。
为满足实际情况中的业务决策需求,我们旨在构建一个标准化、可靠且值得信赖的传染病预测流程及可视化仪表板,该仪表板可在广泛的建模技术、传染病种类及全球各地通用。
我们对四大洲8个国家的6种不同人畜共患疾病(布鲁氏菌病、弯曲菌病、中东呼吸综合征、Q热、蜱传脑炎和兔热病)进行了预测。我们纳入了广泛的统计、机器学习和深度学习模型(共9种),并在“同一健康”框架下的众多特征(平均2326个)上对其进行训练,这些特征包括人口统计学、地形、气候和社会经济因素。该流程和仪表板的创建考虑了关键的业务指标——预测准确性计算效率、时空通用性、不确定性量化和可解释性,这些对于基于数据的战略决策至关重要。
虽然没有单一的最佳模型适用于所有疾病、地区和国家的组合,但我们的集成技术会为每个给定场景选择性能最佳的模型以实现最接近的预测。对于某一地区的新出现或新兴疾病,集成模型可以使用来自有该疾病历史的类似地区的预训练模型来预测该疾病在新地区可能的表现。数据可视化仪表板提供了一个简洁的界面,展示重要的分析指标,如传染病的时间模式、预测、预测不确定性以及所有地理位置和疾病组合的模型特征重要性。
随着对实时、可操作的传染病预测能力需求的增加,这个用于数据收集、分析和报告的标准化自动化平台是朝着基于证据的公共卫生决策以及预防和缓解未来传染病爆发的政策迈出的重要一步。