Suppr超能文献

利用机器学习技术(借助社交倾听平台实现早期人工智能支持的响应)增强对 COVID-19 信息疫情的数字社会理解:开发与实施研究。

Using Machine Learning Technology (Early Artificial Intelligence-Supported Response With Social Listening Platform) to Enhance Digital Social Understanding for the COVID-19 Infodemic: Development and Implementation Study.

作者信息

White Becky K, Gombert Arnault, Nguyen Tim, Yau Brian, Ishizumi Atsuyoshi, Kirchner Laura, León Alicia, Wilson Harry, Jaramillo-Gutierrez Giovanna, Cerquides Jesus, D'Agostino Marcelo, Salvi Cristiana, Sreenath Ravi Shankar, Rambaud Kimberly, Samhouri Dalia, Briand Sylvie, Purnat Tina D

机构信息

Department of Epidemic and Pandemic Preparedness and Prevention, World Health Organization, Geneva, Switzerland.

Citibeats, Barcelona, Spain.

出版信息

JMIR Infodemiology. 2023 Aug 21;3:e47317. doi: 10.2196/47317.

Abstract

BACKGROUND

Amid the COVID-19 pandemic, there has been a need for rapid social understanding to inform infodemic management and response. Although social media analysis platforms have traditionally been designed for commercial brands for marketing and sales purposes, they have been underused and adapted for a comprehensive understanding of social dynamics in areas such as public health. Traditional systems have challenges for public health use, and new tools and innovative methods are required. The World Health Organization Early Artificial Intelligence-Supported Response with Social Listening (EARS) platform was developed to overcome some of these challenges.

OBJECTIVE

This paper describes the development of the EARS platform, including data sourcing, development, and validation of a machine learning categorization approach, as well as the results from the pilot study.

METHODS

Data for EARS are collected daily from web-based conversations in publicly available sources in 9 languages. Public health and social media experts developed a taxonomy to categorize COVID-19 narratives into 5 relevant main categories and 41 subcategories. We developed a semisupervised machine learning algorithm to categorize social media posts into categories and various filters. To validate the results obtained by the machine learning-based approach, we compared it to a search-filter approach, applying Boolean queries with the same amount of information and measured the recall and precision. Hotelling T was used to determine the effect of the classification method on the combined variables.

RESULTS

The EARS platform was developed, validated, and applied to characterize conversations regarding COVID-19 since December 2020. A total of 215,469,045 social posts were collected for processing from December 2020 to February 2022. The machine learning algorithm outperformed the Boolean search filters method for precision and recall in both English and Spanish languages (P<.001). Demographic and other filters provided useful insights on data, and the gender split of users in the platform was largely consistent with population-level data on social media use.

CONCLUSIONS

The EARS platform was developed to address the changing needs of public health analysts during the COVID-19 pandemic. The application of public health taxonomy and artificial intelligence technology to a user-friendly social listening platform, accessible directly by analysts, is a significant step in better enabling understanding of global narratives. The platform was designed for scalability; iterations and new countries and languages have been added. This research has shown that a machine learning approach is more accurate than using only keywords and has the benefit of categorizing and understanding large amounts of digital social data during an infodemic. Further technical developments are needed and planned for continuous improvements, to meet the challenges in the generation of infodemic insights from social media for infodemic managers and public health professionals.

摘要

背景

在新冠疫情期间,需要迅速达成社会层面的理解,以为信息疫情管理与应对提供依据。尽管社交媒体分析平台传统上是为商业品牌的营销和销售目的而设计的,但它们在公共卫生等领域对社会动态进行全面理解方面一直未得到充分利用和适配。传统系统在公共卫生应用方面存在挑战,因此需要新工具和创新方法。世界卫生组织的早期人工智能支持的社会倾听应对(EARS)平台就是为克服其中一些挑战而开发的。

目的

本文描述了EARS平台的开发过程,包括数据来源、机器学习分类方法的开发与验证,以及试点研究的结果。

方法

EARS的数据每日从9种语言的公开来源中的网络对话中收集。公共卫生和社交媒体专家制定了一种分类法,将新冠疫情相关叙述分为5个相关主要类别和41个子类别。我们开发了一种半监督机器学习算法,将社交媒体帖子分类到各个类别和各种筛选条件中。为了验证基于机器学习方法获得的结果,我们将其与一种搜索筛选方法进行比较,应用具有相同信息量的布尔查询,并测量召回率和精确率。使用霍特林T检验来确定分类方法对组合变量的影响。

结果

EARS平台已开发、验证并应用于描述自2020年12月以来关于新冠疫情的对话。2020年12月至2022年2月共收集了215469045条社交帖子用于处理。在英语和西班牙语中,机器学习算法在精确率和召回率方面均优于布尔搜索筛选方法(P<.001)。人口统计学和其他筛选条件为数据提供了有用的见解,平台中用户的性别分布在很大程度上与社交媒体使用的人口层面数据一致。

结论

EARS平台的开发是为了满足新冠疫情期间公共卫生分析师不断变化的需求。将公共卫生分类法和人工智能技术应用于分析师可直接访问的用户友好型社会倾听平台,是朝着更好地理解全球叙述迈出的重要一步。该平台设计具有可扩展性;已经进行了迭代,并增加了新的国家和语言。这项研究表明,机器学习方法比仅使用关键词更准确,并且在信息疫情期间对大量数字社会数据进行分类和理解具有优势。需要并计划进行进一步的技术开发以持续改进,以应对为信息疫情管理者和公共卫生专业人员从社交媒体生成信息疫情见解方面的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b9/10477919/87b742050f83/infodemiology_v3i1e47317_fig1.jpg

相似文献

3
EARS - A WHO Platform for AI-Supported Real-Time Online Social Listening of COVID-19 Conversations.
Stud Health Technol Inform. 2021 May 27;281:1009-1010. doi: 10.3233/SHTI210330.
4
An Adaptive Digital Intelligence System to Support Infodemic Management: The WHO EARS Platform.
Stud Health Technol Inform. 2023 May 18;302:891-892. doi: 10.3233/SHTI230296.
5
Narrative Trends over the COVID-19 Pandemic: Digital Social Listening to Inform WHO Infodemic Management.
Stud Health Technol Inform. 2023 May 18;302:893-894. doi: 10.3233/SHTI230297.
8
WHO Digital Intelligence Analysis for Tracking Narratives and Information Voids in the COVID-19 Infodemic.
Stud Health Technol Inform. 2021 May 27;281:989-993. doi: 10.3233/SHTI210326.
9
Vaccine sentiment analysis using BERT + NBSVM and geo-spatial approaches.
J Supercomput. 2023 May 7:1-31. doi: 10.1007/s11227-023-05319-8.

引用本文的文献

1
Proposing a Conceptual Framework: Social Media Infodemic Listening for Public Health Behaviors.
Int J Public Health. 2024 Nov 14;69:1607394. doi: 10.3389/ijph.2024.1607394. eCollection 2024.
3
Beyond misinformation: developing a public health prevention framework for managing information ecosystems.
Lancet Public Health. 2024 Jun;9(6):e397-e406. doi: 10.1016/S2468-2667(24)00031-8. Epub 2024 Apr 20.
4
Management of infodemics in outbreaks or health crises: a systematic review.
Front Public Health. 2024 Mar 15;12:1343902. doi: 10.3389/fpubh.2024.1343902. eCollection 2024.

本文引用的文献

2
Using Natural Language Processing to Explore Mental Health Insights From UK Tweets During the COVID-19 Pandemic: Infodemiology Study.
JMIR Infodemiology. 2022 Mar 31;2(1):e32449. doi: 10.2196/32449. eCollection 2022 Jan-Jun.
3
Misinformation About COVID-19 Vaccines on Social Media: Rapid Review.
J Med Internet Res. 2022 Aug 4;24(8):e37367. doi: 10.2196/37367.
5
8
The Pandemic, Infodemic, and People's Resilience in India: Viewpoint.
JMIR Public Health Surveill. 2021 Dec 8;7(12):e31645. doi: 10.2196/31645.
10
A Public Health Research Agenda for Managing Infodemics: Methods and Results of the First WHO Infodemiology Conference.
JMIR Infodemiology. 2021 Sep 15;1(1):e30979. doi: 10.2196/30979. eCollection 2021 Jan-Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验