Siracusa Chiara, Quartinello Felice, Soccio Michelina, Manfroni Mattia, Lotti Nadia, Dorigato Andrea, Guebitz Georg M, Pellis Alessandro
acib GmbH, Konrad-Lorenz-Strasse 20, 3430 Tulln, Donau, Austria.
Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna Konrad-Lorenz-Strasse 20, 3430 Tulln, Donau, Austria.
ACS Sustain Chem Eng. 2023 Jun 16;11(26):9751-9760. doi: 10.1021/acssuschemeng.3c01796. eCollection 2023 Jul 3.
Among novel renewable furanoate-based polyesters, poly(pentamethylene 2,5-furandicarboxylate) (PPeF) shows outstanding gas barrier properties and high flexibility. PPeF blending/copolymerization with another well-known bio-based polymer, poly(lactic acid) (PLA), leads to considerably better mechanical and gas barrier properties of the latter, making it suitable for flexible food packaging applications. In this work, enzymatic depolymerization of PLA/PPeF blends with different compositions (1, 3, 5, 20, 30, and 50 wt % PPeF) and a PLA-PPeF block copolymer (50 wt % PPeF) by cutinase 1 from (Thc_Cut1) was investigated as a possible recycling strategy. Based on quantification of weight loss and high-performance liquid chromatography (HPLC) analysis of released molecules, faster hydrolysis was seen for PLA/PPeF blends with increasing PPeF content when compared to neat PLA, while the block copolymer (P(LA50PeF50)) was significantly less susceptible to hydrolysis. Surface morphology analysis (via scanning electron microscopy), Fourier transform infrared spectroscopy, and NMR analysis confirmed preferential hydrolysis of the PPeF component. Through crystallization, 2,5-furandicarboxylic acid was selectively recovered from the depolymerized films and used for the resynthesis of the PPeF homopolymer, demonstrating the potential of enzymes for novel recycling concepts. The possibility of selective recovery of 2,5-furandicarboxylic acid from the completely depolymerized films with a 75% yield could bring further evidence of the high value of these materials, both in the form of blends and copolymers, for a sustainable whole packaging life cycle, where PPeF is potentially enzymatically recycled and PLA is mechanically recycled.
在新型可再生的基于呋喃二甲酸酯的聚酯中,聚(2,5-呋喃二甲酸亚戊酯)(PPeF)具有出色的气体阻隔性能和高柔韧性。PPeF与另一种著名的生物基聚合物聚乳酸(PLA)共混/共聚,可使后者的机械性能和气体阻隔性能显著提高,使其适用于柔性食品包装应用。在这项工作中,研究了用来自嗜热栖热菌的角质酶1(Thc_Cut1)对不同组成(1、3、5、20、30和50 wt% PPeF)的PLA/PPeF共混物以及一种PLA-PPeF嵌段共聚物(50 wt% PPeF)进行酶解聚,作为一种可能的回收策略。基于重量损失的定量分析和对释放分子的高效液相色谱(HPLC)分析,与纯PLA相比,随着PPeF含量增加,PLA/PPeF共混物的水解速度更快,而嵌段共聚物(P(LA₅₀PeF₅₀))对水解的敏感性显著较低。表面形态分析(通过扫描电子显微镜)、傅里叶变换红外光谱和核磁共振分析证实了PPeF组分的优先水解。通过结晶,从解聚薄膜中选择性回收了2,5-呋喃二甲酸,并用于PPeF均聚物的再合成,证明了酶在新型回收概念中的潜力。从完全解聚的薄膜中以75%的产率选择性回收2,5-呋喃二甲酸的可能性,可为这些材料(以共混物和共聚物形式)在可持续的整个包装生命周期中的高价值提供进一步证据,其中PPeF可能通过酶法回收,而PLA则通过机械回收。