Suppr超能文献

序列和结构特异性RNA寡核苷酸结合可减轻异质性核糖核蛋白A1功能障碍。

Sequence- and structure-specific RNA oligonucleotide binding attenuates heterogeneous nuclear ribonucleoprotein A1 dysfunction.

作者信息

Clarke Joseph P, Thibault Patricia A, Fatima Sakina, Salapa Hannah E, Kalyaanamoorthy Subha, Ganesan Aravindhan, Levin Michael C

机构信息

Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.

Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada.

出版信息

Front Mol Biosci. 2023 Jun 22;10:1178439. doi: 10.3389/fmolb.2023.1178439. eCollection 2023.

Abstract

The RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (A1) regulates RNA metabolism, which is crucial to maintaining cellular homeostasis. A1 dysfunction mechanistically contributes to reduced cell viability and loss, but molecular mechanisms of how A1 dysfunction affects cell viability and loss, and methodologies to attenuate its dysfunction, are lacking. Utilizing molecular modeling and an optogenetic system, this study examined the consequences of RNA oligonucleotide (RNAO) treatment on attenuating A1 dysfunction and its downstream cellular effects. and thermal shift experiments revealed that binding of RNAOs to the RNA Recognition Motif 1 of A1 is stabilized by sequence- and structure-specific RNAO-A1 interactions. Using optogenetics to model A1 cellular dysfunction, we show that sequence- and structure-specific RNAOs significantly attenuated abnormal cytoplasmic A1 self-association kinetics and A1 cytoplasmic clustering. Downstream of A1 dysfunction, we demonstrate that A1 clustering affects the formation of stress granules, activates cell stress, and inhibits protein translation. With RNAO treatment, we show that stress granule formation is attenuated, cell stress is inhibited, and protein translation is restored. This study provides evidence that sequence- and structure-specific RNAO treatment attenuates A1 dysfunction and its downstream effects, thus allowing for the development of A1-specific therapies that attenuate A1 dysfunction and restore cellular homeostasis.

摘要

RNA结合蛋白异质性细胞核核糖核蛋白A1(A1)调节RNA代谢,这对维持细胞稳态至关重要。A1功能障碍在机制上导致细胞活力降低和丧失,但目前缺乏关于A1功能障碍如何影响细胞活力和丧失的分子机制以及减轻其功能障碍的方法。本研究利用分子建模和光遗传学系统,研究了RNA寡核苷酸(RNAO)处理对减轻A1功能障碍及其下游细胞效应的影响。热迁移实验表明,RNAO与A1的RNA识别基序1的结合通过序列和结构特异性的RNAO-A1相互作用得以稳定。利用光遗传学模拟A1细胞功能障碍,我们发现序列和结构特异性的RNAO显著减轻了异常的细胞质A1自缔合动力学和A1细胞质聚集。在A1功能障碍的下游,我们证明A1聚集会影响应激颗粒的形成,激活细胞应激并抑制蛋白质翻译。通过RNAO处理,我们发现应激颗粒形成减少,细胞应激受到抑制,蛋白质翻译得以恢复。本研究提供了证据,表明序列和结构特异性的RNAO处理可减轻A1功能障碍及其下游效应,从而为开发减轻A1功能障碍并恢复细胞稳态的A1特异性疗法提供了可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/353c/10325567/7a2957c45b44/fmolb-10-1178439-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验