Liangyu Zhu, Bochao Zhang, Guoquan Yin, Yuan Zhang, Heng Li, Hanyu Zhou
Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China.
Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
Biochem Biophys Rep. 2023 Jun 21;35:101502. doi: 10.1016/j.bbrep.2023.101502. eCollection 2023 Sep.
Cuproptosis is a form of cell death caused by intracellular copper excess, which plays an important regulatory role in the development and progression of cancers, including hepatocellular carcinoma (HCC), a prevalent malignancy with high morbidity and mortality. This study aimed to create a cuproptosis associated long non-coding RNAs (CAlncRNAs)signature to predict HCC patient survival and immunotherapy response. Firstly, we identified 509 CAlncRNAs using Pearson correlation analysis in The Cancer Genome Atlas (TCGA) datasets, before the three CAlncRNAs (MKLN1-AS, FOXD2-AS1, LINC02870) with the most prognostic value were further screened. Then, we constructed a prognostic risk model for HCCwas using univariate and LASSO Cox regression analyses. Multivariate Cox regression analyses illustrated that this model was an independent prognostic factor for overall survival (OS) prediction, outperforming traditional clinicopathological factors. And the risk score not only could be prognostic factors independent of other factors but also suited for patients with diverse ages, stages, and grades. The 1-, 3-, and 5- years areas under the curves (AUC) values of the model were 0.759, 0.668 and 0.674 respectively. Pathway analyses showed that the high-risk groupenriched in immune-related pathways. Importantly, patients with higher risk scores exhibited higher mutation frequency, higher TMB scores, and lower TIDE scores. Besides, we screened for two chemical drugs (A-443654 and Pyrimethamine) with the greatest value for high-risk HCC patients. Finally, the abnormal high expression of the three CAlncRNAs were confirmed in HCC tissues and cells by Real Time Quantitative PCR (RT-qPCR). And proliferative, migratory and invasion abilities of HCC cell were restrained via silencing CAlncRNAs expression In summary, we built a CAlncRNAs-based risk score model, which can be a candidate for HCC patients prognostic prediction and offer some useful information for immunotherapies.
铜死亡是一种由细胞内铜过量引起的细胞死亡形式,在包括肝细胞癌(HCC)在内的癌症发生和发展过程中发挥着重要的调节作用。HCC是一种常见的恶性肿瘤,发病率和死亡率都很高。本研究旨在创建一种与铜死亡相关的长链非编码RNA(CAlncRNAs)特征,以预测HCC患者的生存情况和免疫治疗反应。首先,我们在癌症基因组图谱(TCGA)数据集中使用Pearson相关分析鉴定了509个CAlncRNAs,然后进一步筛选出具有最高预后价值的三个CAlncRNAs(MKLN1-AS、FOXD2-AS1、LINC02870)。接着,我们使用单变量和LASSO Cox回归分析构建了HCC的预后风险模型。多变量Cox回归分析表明,该模型是总生存期(OS)预测的独立预后因素,优于传统的临床病理因素。并且风险评分不仅可以作为独立于其他因素的预后因素,还适用于不同年龄、分期和分级的患者。该模型的1年、3年和5年曲线下面积(AUC)值分别为0.759、0.668和0.674。通路分析显示,高风险组富含免疫相关通路。重要的是,风险评分较高的患者表现出更高的突变频率、更高的肿瘤突变负荷(TMB)评分和更低的肿瘤免疫逃逸(TIDE)评分。此外,我们为高风险HCC患者筛选出了两种最具价值的化学药物(A-443654和乙胺嘧啶)。最后,通过实时定量PCR(RT-qPCR)证实了这三个CAlncRNAs在HCC组织和细胞中的异常高表达。并且通过沉默CAlncRNAs的表达抑制了HCC细胞的增殖、迁移和侵袭能力。总之,我们构建了一个基于CAlncRNAs的风险评分模型,该模型可作为HCC患者预后预测的候选模型,并为免疫治疗提供一些有用信息。