Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
Anal Chem. 2023 Jul 25;95(29):10921-10929. doi: 10.1021/acs.analchem.3c00518. Epub 2023 Jul 10.
Herein, we assess the complementarity and complexity of data that can be detected within mammalian lipidome mass spectrometry imaging (MSI) matrix-assisted laser desorption ionization (MALDI) and nanospray desorption electrospray ionization (nano-DESI). We do so by employing 21 T Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) with absorption mode FT processing in both cases, allowing unmatched mass resolving power per unit time (≥613k at / 760, 1.536 s transients). While our results demonstrated that molecular coverage and dynamic range capabilities were greater in MALDI analysis, nano-DESI provided superior mass error, and all annotations for both modes had sub-ppm error. Taken together, these experiments highlight the coverage of 1676 lipids and serve as a functional guide for expected lipidome complexity within nano-DESI-MSI and MALDI-MSI. To further assess the lipidome complexity, mass splits (, the difference in mass between neighboring peaks) within single pixels were collated across all pixels from each respective MSI experiment. The spatial localization of these mass splits was powerful in informing whether the observed mass splits were biological or artificial (, matrix related). Mass splits down to 2.4 mDa were observed (, sodium adduct ambiguity) in each experiment, and both modalities highlighted comparable degrees of lipidome complexity. Further, we highlight the persistence of certain mass splits (, 8.9 mDa; double bond ambiguity) independent of ionization biases. We also evaluate the need for ultrahigh mass resolving power for mass splits ≤4.6 mDa (potassium adduct ambiguity) at / > 1000, which may only be resolved by advanced FTICR-MS instrumentation.
在此,我们评估了哺乳动物脂质组质谱成像 (MSI) 基质辅助激光解吸电离 (MALDI) 和纳米喷雾解吸电喷雾电离 (nano-DESI) 中可检测到的数据的互补性和复杂性。我们通过在两种情况下都使用 21 T 傅里叶变换离子回旋共振质谱 (FTICR-MS) 进行吸收模式 FT 处理来实现这一点,从而允许在单位时间内实现无与伦比的质量分辨率(≥613k/760,1.536 s 瞬变)。虽然我们的结果表明 MALDI 分析具有更大的分子覆盖范围和动态范围能力,但 nano-DESI 提供了更高的质量误差,并且两种模式的所有注释都具有亚 ppm 的误差。综上所述,这些实验突出了 1676 种脂质的覆盖范围,并为 nano-DESI-MSI 和 MALDI-MSI 中的预期脂质组复杂性提供了功能指南。为了进一步评估脂质组的复杂性,在每个各自的 MSI 实验中,我们对所有像素的单个像素内的质量分裂(即相邻峰之间的质量差异)进行了整理。这些质量分裂的空间定位在告知观察到的质量分裂是生物的还是人为的(即与基质相关)方面非常有效。在每个实验中都观察到了低至 2.4 mDa 的质量分裂(即钠加合物歧义),两种模式都突出了相当程度的脂质组复杂性。此外,我们强调了某些质量分裂(即 8.9 mDa;双键歧义)的持久性独立于电离偏差。我们还评估了在 / > 1000 时,质量分裂≤4.6 mDa(钾加合物歧义)需要超高质量分辨率的必要性,这可能只能通过先进的 FTICR-MS 仪器来解决。