Hoeller Oliver, Toettcher Jared E, Cai Huaqing, Sun Yaohui, Huang Chuan-Hsiang, Freyre Mariel, Zhao Min, Devreotes Peter N, Weiner Orion D
Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America.
Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America.
PLoS Biol. 2016 Feb 18;14(2):e1002381. doi: 10.1371/journal.pbio.1002381. eCollection 2016 Feb.
For directional movement, eukaryotic cells depend on the proper organization of their actin cytoskeleton. This engine of motility is made up of highly dynamic nonequilibrium actin structures such as flashes, oscillations, and traveling waves. In Dictyostelium, oscillatory actin foci interact with signals such as Ras and phosphatidylinositol 3,4,5-trisphosphate (PIP3) to form protrusions. However, how signaling cues tame actin dynamics to produce a pseudopod and guide cellular motility is a critical open question in eukaryotic chemotaxis. Here, we demonstrate that the strength of coupling between individual actin oscillators controls cell polarization and directional movement. We implement an inducible sequestration system to inactivate the heterotrimeric G protein subunit Gβ and find that this acute perturbation triggers persistent, high-amplitude cortical oscillations of F-actin. Actin oscillators that are normally weakly coupled to one another in wild-type cells become strongly synchronized following acute inactivation of Gβ. This global coupling impairs sensing of internal cues during spontaneous polarization and sensing of external cues during directional motility. A simple mathematical model of coupled actin oscillators reveals the importance of appropriate coupling strength for chemotaxis: moderate coupling can increase sensitivity to noisy inputs. Taken together, our data suggest that Gβ regulates the strength of coupling between actin oscillators for efficient polarity and directional migration. As these observations are only possible following acute inhibition of Gβ and are masked by slow compensation in genetic knockouts, our work also shows that acute loss-of-function approaches can complement and extend the reach of classical genetics in Dictyostelium and likely other systems as well.
对于定向运动,真核细胞依赖于其肌动蛋白细胞骨架的正确组织。这种运动引擎由高度动态的非平衡肌动蛋白结构组成,如闪光、振荡和行波。在盘基网柄菌中,振荡的肌动蛋白焦点与诸如Ras和磷脂酰肌醇3,4,5-三磷酸(PIP3)等信号相互作用以形成突起。然而,信号线索如何控制肌动蛋白动力学以产生伪足并引导细胞运动,是真核细胞趋化性中一个关键的开放性问题。在这里,我们证明了单个肌动蛋白振荡器之间的耦合强度控制细胞极化和定向运动。我们实施了一种诱导性隔离系统来使异源三聚体G蛋白亚基Gβ失活,并发现这种急性扰动会触发F-肌动蛋白持续的、高振幅的皮质振荡。在野生型细胞中通常相互弱耦合的肌动蛋白振荡器在Gβ急性失活后会变得强烈同步。这种全局耦合会损害自发极化过程中对内部线索的感知以及定向运动过程中对外部线索的感知。一个耦合肌动蛋白振荡器的简单数学模型揭示了适当耦合强度对趋化性的重要性:适度耦合可以提高对噪声输入的敏感性。综上所述,我们的数据表明Gβ调节肌动蛋白振荡器之间的耦合强度,以实现有效的极性和定向迁移。由于这些观察结果只有在急性抑制Gβ后才可能出现,并且在基因敲除中被缓慢的补偿所掩盖,我们的工作还表明急性功能丧失方法可以补充和扩展盘基网柄菌以及其他可能系统中经典遗传学的研究范围。