Suppr超能文献

用于化学毒性预测与管理的多模态深度学习

Multimodal deep learning for chemical toxicity prediction and management.

作者信息

Hong Jiwon, Kwon Hyun

机构信息

ROK Army Signal School, Daejeon, 34059, South Korea.

Department of Artificial Intelligence and Data Science, Korea Military Academy, Seoul, 01805, South Korea.

出版信息

Sci Rep. 2025 Jun 3;15(1):19491. doi: 10.1038/s41598-025-95720-5.

Abstract

The accurate prediction of chemical toxicity is a crucial research focus in chemistry, biotechnology, and national defense. The development of comprehensive datasets for chemical toxicity prediction remains limited due to security constraints and the structural complexity of chemical data. Existing studies are often confined to specific domains, such as genotoxicity or acute oral toxicity. To address these gaps, this study introduces an integrated research dataset that combines chemical property data and molecular structure images. The dataset is curated from diverse sources, preprocessed, and normalized to optimize it for deep learning applications. The proposed deep learning model enhances the precision of multi-toxicity predictions by integrating Vision Transformer (ViT) architecture for image-based data and a Multilayer Perceptron (MLP) for numerical data. A joint fusion mechanism is employed to effectively combine image and numerical features, significantly improving predictive performance. The model is also designed for multi-label toxicity prediction, enabling simultaneous evaluation of diverse toxicological endpoints. Experimental results show that ViT model demonstrate an accuracy of 0.872, an F1-score of 0.86, and a Pearson Correlation Coefficient (PCC) of 0.9192.

摘要

化学毒性的准确预测是化学、生物技术和国防领域的一个关键研究重点。由于安全限制和化学数据的结构复杂性,用于化学毒性预测的综合数据集的开发仍然有限。现有研究通常局限于特定领域,如遗传毒性或急性口服毒性。为了弥补这些差距,本研究引入了一个综合研究数据集,该数据集结合了化学性质数据和分子结构图像。该数据集来自不同来源,经过预处理和归一化,以优化其用于深度学习应用。所提出的深度学习模型通过集成用于基于图像的数据的视觉Transformer(ViT)架构和用于数值数据的多层感知器(MLP)来提高多毒性预测的精度。采用联合融合机制有效地结合图像和数值特征,显著提高预测性能。该模型还设计用于多标签毒性预测,能够同时评估多种毒理学终点。实验结果表明,ViT模型的准确率为0.872,F1分数为0.86,皮尔逊相关系数(PCC)为0.9192。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d582/12134256/92e298170b32/41598_2025_95720_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验