文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于预测I-III期老年结直肠癌患者术后生存情况的竞争风险和随机生存森林模型

Competing risk and random survival forest models for predicting survival in post-resection elderly stage I-III colorectal cancer patients.

作者信息

Zhang Qian, Xu Rongxuan, Zhen Wenchong, Bai Xueting, Li Zihan, Zhang Yixin, Wu Wei, Yao Zhihan, Li Xiaofeng

机构信息

Department of Public Health, Dalian Medical University, Dalian, Liaoning, China.

出版信息

Sci Rep. 2025 Jul 7;15(1):24269. doi: 10.1038/s41598-025-05824-1.


DOI:10.1038/s41598-025-05824-1
PMID:40624131
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12234742/
Abstract

Elderly patients with colorectal cancer (CRC) face an elevated risk of cardiovascular and cerebrovascular death (CVD), yet few studies have explicitly addressed CVD as a competing risk event. Traditional survival analyses often overlook competing risks, potentially biasing prognostic estimates. This study aimed to evaluate cancer-specific survival (CSS) in elderly patients with stage I-III CRC after surgery using Fine-Gray subdistribution hazard model and a random survival forest (RSF) approach, thereby improving clinical decision-making. Older patients (≥ 65 years) with stage I-III CRC between 2010 and 2015 were selected from the Surveillance, Epidemiology and End Results (SEER) database. In addition, data from 2018-2021 in the database is extracted as an external validation set. In this study, CVD was considered as a competing risk event of CRC specific death, and Fine-gray regression analysis was used to construct the Fine-Gray subdistribution hazard model and a competing risk-based random survival forest (RSF) model were used to analyze postoperative cancer-specific survival (CSS) in elderly patients with stage I-III CRC as the best mechanism to obtain more precise results and help make clinical management decisions. Predictors included age, sex, race, marital status, grade, T stage, N stage, histological type, primary site, carcinoembryonic antigen (CEA), perineural invasion, tumor deposits, tumor size. Model performance was assessed through discrimination[C-index, area under the receiver operating curve (AUC)], accuracy[Brier score (BS)], and clinical utility[decision curve analysis (DCA)]. In addition, we also visualized the Fine-Gray subdistribution hazard model with a nomogram and compared it with the nomogram of the Cox model. A total of 19195 elderly (≥ 65 years) patients with stage I-III CRC who underwent primary site surgery between 2010 and 2015 were included in the study. There were 10305 deaths among all patients, including 4253 deaths specific to CRC, 2571 deaths due to cardiovascular and cerebrovascular diseases, 379 deaths due to other neoplastic diseases and 3120 deaths due to other non neoplastic diseases. The Fine-Gray subdistribution risk and RSF models we developed have good discrimination power and accuracy. The Fine-Gray subdistribution risk model:the 1-year, 3-year and 5-year C-index was 0.771, 0.775 and 0.759 in the train set, and 0.744, 0.762 and 0.753 in the internal test set . The 1-year, and 3-year C-index in the external validation set was 0.762 and 0.775.The RSF model:the 1-year, 3-year and 5-year AUC was 0.782 (95% CI 0.765, 0.798), 0.8 (95% CI 0.79, 0.811) and 0.786 (95% CI 0.776, 0.796) in the train set, and 0.754 (95% CI 0.727, 0.782), 0.786 (95% CI 0.769, 0.802) and 0.782 (95% CI 0.766, 0.797) in the internal test set. The 1-year and 3-year AUC was 0.77 (95% CI 0.749, 0.79) and 0.83 (95% CI 0.786, 0.82) in the external verification set. The 1-year, 3-year and 5-year BS was 0.053 (95% CI 0.050, 0.056), 0.104 (95% CI 0.101, 0.107) and 0.128 (95% CI 0.124, 0.132) in the train set, and 0.050 (95% CI0.044, 0.056), 0.106 (95% CI 0.098, 0.112) and 0.130 (95% CI 0.124, 0.136) in the internal test set. The 1-year and 3-year BS was 0.042 (5% CI 0.038, 0.044) and 0.085 (95% CI 0.078, 0.092) in the external verification set. The RSF model we established has good discrimination power and accuracy.The 1-year, 3-year, 5-year C-index was 0.801, 0.788 and 0.769 in the train set, and 0.744, 0.754 and 0.745 in the internal test set of the RSF model. The 1-year, and 3-year C-index in the external validation set was 0.761 and 0.771.The 1-year, 3-year and 5-year AUC was 0.792 (95% CI 0.776, 0.807), 0.813 (95% CI 0.802, 0.823) and 0.801 (95% CI 0.791, 0.811) in the train set and 0.749 (95% CI 0.721, 0.777), 0.779 (95% CI 0.762, 0.796) and 0.782 (95% CI 0.767, 0.798) in the internal test set (Fig. 6a, b). The 1-year and 3-year AUC was 0.767 (95% CI 0.747, 0.788) and 0.8 (95% CI 0.783, 0.817) in the external verification set (Fig. 7c). The 1-year, 3-year and 5-year BS was 0.053 (95% CI 0.51, 0.057), 0.105 (95% CI 0.102, 0.108) and 0.131 (95% CI 0.128, 0.134) in the train set, and 0.051 (95% CI0.45, 0.055), 0.109 (95% CI 0.102, 0.116) and 0.132 (95% CI 0.125, 0.140) in the internal test set (Fig. 7d, e). The 1-year and 3-year BS was 0.042 (95% CI 0.038, 0.045) and 0.086 (95% CI 0.082, 0.091) in the external verification set (Fig. 7f).DCA showed that models could lead to higher clinical benefits for patients. Through the nomogram we constructed, it can be calculated that the traditional Cox model overestimated the CSS of patients compared with the Fine-Gray subdistribution risk model. Based on the SEER database, the Fine-Gray subdistribution hazard model and the competing risk-based RSF model were used to predict CSS after CRC surgery in elderly patients, and models performed well. Incorporating competing risk events in survival analysis improves result accuracy and supports personalized clinical decision-making for elderly CRC patients.

摘要

老年结直肠癌(CRC)患者面临心血管和脑血管死亡(CVD)风险升高的问题,但很少有研究明确将CVD视为竞争风险事件。传统生存分析常常忽略竞争风险,这可能会使预后估计产生偏差。本研究旨在使用Fine-Gray亚分布风险模型和随机生存森林(RSF)方法评估I-III期CRC老年患者术后的癌症特异性生存(CSS),从而改善临床决策。从监测、流行病学和最终结果(SEER)数据库中选取2010年至2015年间年龄≥65岁的I-III期CRC老年患者。此外,提取数据库中2018 - 2021年的数据作为外部验证集。在本研究中,将CVD视为CRC特异性死亡的竞争风险事件,使用Fine-gray回归分析构建Fine-Gray亚分布风险模型,并使用基于竞争风险的随机生存森林(RSF)模型分析I-III期CRC老年患者术后的癌症特异性生存(CSS),作为获得更精确结果并帮助做出临床管理决策的最佳方法。预测因素包括年龄、性别、种族、婚姻状况、分级、T分期、N分期、组织学类型、原发部位、癌胚抗原(CEA)、神经周围侵犯、肿瘤沉积物、肿瘤大小。通过区分度[C指数、受试者操作特征曲线下面积(AUC)]、准确性[Brier评分(BS)]和临床实用性[决策曲线分析(DCA)]评估模型性能。此外,我们还用列线图直观展示了Fine-Gray亚分布风险模型,并将其与Cox模型的列线图进行比较。本研究共纳入2010年至2015年间19195例接受原发部位手术的年龄≥65岁的I-III期CRC老年患者。所有患者中有10305例死亡,其中包括4253例CRC特异性死亡、2571例心血管和脑血管疾病死亡、379例其他肿瘤疾病死亡以及3120例其他非肿瘤疾病死亡。我们开发的Fine-Gray亚分布风险模型和RSF模型具有良好的区分能力和准确性。Fine-Gray亚分布风险模型:训练集中1年、3年和5年的C指数分别为0.771、0.775和0.759,内部测试集中分别为0.744、0.762和0.753。外部验证集中1年和3年的C指数分别为0.762和0.775。RSF模型:训练集中1年、3年和5年的AUC分别为0.782(95%CI 0.765,0.798)、0.8(95%CI 0.79,0.811)和0.786(95%CI 0.776,0.796),内部测试集中分别为0.754(95%CI 0.727,0.782)、0.786(95%CI 0.769,0.802)和0.782(95%CI 0.766,0.797)。外部验证集中1年和3年的AUC分别为0.77(95%CI 0.749,0.79)和0.83(95%CI 0.786,0.82)。训练集中1年、3年和5年的BS分别为0.053(95%CI 0.050,0.056)、0.104(95%CI 0.101,0.107)和0.128(95%CI 0.124,0.132),内部测试集中分别为0.050(95%CI0.044,0.056)、0.106(95%CI 0.098,0.112)和0.130(95%CI 0.124,0.136)。外部验证集中1年和3年的BS分别为0.042(5%CI 0.038,0.044)和0.085(95%CI 0.078,0.092)。我们建立的RSF模型具有良好的区分能力和准确性。RSF模型训练集中1年、3年、5年的C指数分别为0.801、0.788和0.769,内部测试集中分别为0.744、0.754和0.745。外部验证集中1年和3年的C指数分别为0.761和0.771。训练集中1年、3年和5年的AUC分别为0.792(95%CI 0.776,0.807)、0.813(95%CI 0.802,0.823)和0.801(95%CI 0.791,0.811),内部测试集中分别为0.749(95%CI 0.721,0.777)、0.779(95%CI 0.762,0.796)和0.782(95%CI 0.767,0.798)(图6a,b)。外部验证集中1年和3年的AUC分别为0.767(95%CI 0.747,0.788)和0.8(95%CI 0.783,0.817)(图7c)。训练集中1年、3年和5年的BS分别为0.053(95%CI 0.51,0.057)、0.105(95%CI 0.102,0.108)和0.131(95%CI 0.128,0.134),内部测试集中分别为0.051(95%CI0.45,0.055)、0.109(95%CI 0.102,0.116)和0.132(95%CI 0.125,0.140)(图7d,e)。外部验证集中1年和3年的BS分别为0.042(95%CI 0.038,0.045)和0.086(95%CI 0.082,0.091)(图7f)。决策曲线分析表明模型可为患者带来更高的临床获益。通过我们构建的列线图可以计算出,与Fine-Gray亚分布风险模型相比,传统Cox模型高估了患者的CSS。基于SEER数据库,使用Fine-Gray亚分布风险模型和基于竞争风险的RSF模型预测老年CRC患者CRC术后的CSS,模型表现良好。在生存分析中纳入竞争风险事件可提高结果准确性,并支持为老年CRC患者进行个性化临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069c/12234742/65b40987e318/41598_2025_5824_Fig7a_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069c/12234742/a5213d2d3ed1/41598_2025_5824_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069c/12234742/6de42833d596/41598_2025_5824_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069c/12234742/68e97f06677b/41598_2025_5824_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069c/12234742/03a32ef8cf58/41598_2025_5824_Fig4a_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069c/12234742/46f46a09dce7/41598_2025_5824_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069c/12234742/e5193f486306/41598_2025_5824_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069c/12234742/65b40987e318/41598_2025_5824_Fig7a_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069c/12234742/a5213d2d3ed1/41598_2025_5824_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069c/12234742/6de42833d596/41598_2025_5824_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069c/12234742/68e97f06677b/41598_2025_5824_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069c/12234742/03a32ef8cf58/41598_2025_5824_Fig4a_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069c/12234742/46f46a09dce7/41598_2025_5824_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069c/12234742/e5193f486306/41598_2025_5824_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/069c/12234742/65b40987e318/41598_2025_5824_Fig7a_HTML.jpg

相似文献

[1]
Competing risk and random survival forest models for predicting survival in post-resection elderly stage I-III colorectal cancer patients.

Sci Rep. 2025-7-7

[2]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[3]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[4]
OncoE25: an AI model for predicting postoperative prognosis in early-onset stage I-III colon and rectal cancer-a population-based study using SEER with dual-center cohort validation.

J Transl Med. 2025-6-22

[5]
Development and validation of nomograms for predicting survival of locally advanced rectosigmoid junction cancer patients: a SEER database analysis.

Transl Cancer Res. 2025-5-30

[6]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[7]
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.

Cochrane Database Syst Rev. 2022-9-26

[8]
A New Measure of Quantified Social Health Is Associated With Levels of Discomfort, Capability, and Mental and General Health Among Patients Seeking Musculoskeletal Specialty Care.

Clin Orthop Relat Res. 2025-4-1

[9]
Sex and gender as predictors for allograft and patient-relevant outcomes after kidney transplantation.

Cochrane Database Syst Rev. 2024-12-19

[10]
Machine Learning Did Not Outperform Conventional Competing Risk Modeling to Predict Revision Arthroplasty.

Clin Orthop Relat Res. 2024-8-1

本文引用的文献

[1]
The prognostic impact of tumor deposits in colorectal cancer: More than just N1c.

Cancer. 2024-12-1

[2]
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2024

[3]
Cardiovascular-specific mortality and risk factors in colorectal Cancer patients: A cohort study based on registry data of over 500,000 individuals in the US.

Prev Med. 2024-2

[4]
Changing epidemiology of colorectal cancer - birth cohort effects and emerging risk factors.

Nat Rev Gastroenterol Hepatol. 2024-1

[5]
Real-world analysis of survival benefit of surgery and adjuvant therapy in elderly patients with colorectal cancer.

Sci Rep. 2023-9-8

[6]
Perineural invasion in colorectal cancer: mechanisms of action and clinical relevance.

Cell Oncol (Dordr). 2024-2

[7]
Long-term risks of cardiovascular death in a population-based cohort of 1,141,675 older patients with cancer.

Age Ageing. 2023-5-1

[8]
Marital Status, Living Arrangement, and Cancer Recurrence and Survival in Patients with Stage III Colon Cancer: Findings from CALGB 89803 (Alliance).

Oncologist. 2022-6-8

[9]
Cardiovascular morbidities in postoperative colorectal cancer patients.

Sci Rep. 2021-11-1

[10]
Are competing-risk models superior to standard Cox models for predicting cardiovascular risk in older adults? Analysis of a whole-of-country primary prevention cohort aged ≥65 years.

Int J Epidemiol. 2022-5-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索