Li Jingxiong, Zheng Sunyi, Shui Zhongyi, Zhang Shichuan, Yang Linyi, Sun Yuxuan, Zhang Yunlong, Li Honglin, Ye Yuanxin, van Ooijen Peter M A, Li Kang, Yang Lin
IEEE Trans Med Imaging. 2024 Jan;43(1):216-228. doi: 10.1109/TMI.2023.3293854. Epub 2024 Jan 2.
Karyotyping is of importance for detecting chromosomal aberrations in human disease. However, chromosomes easily appear curved in microscopic images, which prevents cytogeneticists from analyzing chromosome types. To address this issue, we propose a framework for chromosome straightening, which comprises a preliminary processing algorithm and a generative model called masked conditional variational autoencoders (MC-VAE). The processing method utilizes patch rearrangement to address the difficulty in erasing low degrees of curvature, providing reasonable preliminary results for the MC-VAE. The MC-VAE further straightens the results by leveraging chromosome patches conditioned on their curvatures to learn the mapping between banding patterns and conditions. During model training, we apply a masking strategy with a high masking ratio to train the MC-VAE with eliminated redundancy. This yields a non-trivial reconstruction task, allowing the model to effectively preserve chromosome banding patterns and structure details in the reconstructed results. Extensive experiments on three public datasets with two stain styles show that our framework surpasses the performance of state-of-the-art methods in retaining banding patterns and structure details. Compared to using real-world bent chromosomes, the use of high-quality straightened chromosomes generated by our proposed method can improve the performance of various deep learning models for chromosome classification by a large margin. Such a straightening approach has the potential to be combined with other karyotyping systems to assist cytogeneticists in chromosome analysis.
核型分析对于检测人类疾病中的染色体畸变至关重要。然而,染色体在显微图像中很容易出现弯曲,这阻碍了细胞遗传学家分析染色体类型。为了解决这个问题,我们提出了一个染色体拉直框架,它包括一个预处理算法和一个名为掩码条件变分自编码器(MC-VAE)的生成模型。该处理方法利用补丁重排来解决消除低曲率的困难,为MC-VAE提供合理的初步结果。MC-VAE通过利用基于染色体曲率的补丁来学习条带模式与条件之间的映射,进一步拉直结果。在模型训练期间,我们应用高掩码率的掩码策略来训练消除冗余的MC-VAE。这产生了一个不平凡的重建任务,使模型能够在重建结果中有效地保留染色体条带模式和结构细节。在两个染色风格的三个公共数据集上进行的大量实验表明,我们的框架在保留条带模式和结构细节方面优于现有方法的性能。与使用真实世界的弯曲染色体相比,使用我们提出的方法生成的高质量拉直染色体可以大幅提高各种用于染色体分类的深度学习模型的性能。这种拉直方法有可能与其他核型分析系统相结合,以协助细胞遗传学家进行染色体分析。