Suppr超能文献

BR-ChromNet:基于条件随机场的染色体结构异常带型分辨率定位

BR-ChromNet: Banding resolution localization of chromosome structural abnormality with conditional random field.

机构信息

Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Center of Excellence on Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Center of Excellence for Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China.

出版信息

J Mol Biol. 2024 Oct 15;436(20):168733. doi: 10.1016/j.jmb.2024.168733. Epub 2024 Aug 14.

Abstract

Detecting chromosome structural abnormalities in medical genetics is essential for diagnosing genetic disorders and understanding their implications for an individual's health. However, existing computational methods are formulated as a binary-class classification problem trained only on representations of positive/negative chromosome pairs. This paper introduces an innovative framework for detecting chromosome abnormalities with banding resolution, capable of precisely identifying and masking the specific abnormal regions. We highlight a pixel-level abnormal mapping strategy guided by banding features. This approach integrates data from both the original image and banding characteristics, enhancing the interpretability of prediction results for cytogeneticists. Furthermore, we have implemented an ensemble approach that pairs a discriminator with a conditional random field heatmap generator. This combination significantly reduces the false positive rate in abnormality screening. We benchmarked our proposed framework with state-of-the-art (SOTA) methods in abnormal screening and structural abnormal region segmentation. Our results show cutting-edge effectiveness and greatly reduce the high false positive rate. It also shows superior performance in sensitivity and segmentation accuracy. Being able to identify abnormal regions consistently shows that our model has demonstrated significant clinical utility with high model interpretability. BRChromNet is open-sourced and available at https://github.com/frankchen121212/BR-ChromNet.

摘要

在医学遗传学中检测染色体结构异常对于诊断遗传疾病和理解其对个体健康的影响至关重要。然而,现有的计算方法被制定为仅在正/负染色体对的表示上进行训练的二分类分类问题。本文提出了一种具有带分辨率的染色体异常检测的创新框架,能够精确地识别和屏蔽特定的异常区域。我们强调了一种基于带特征的像素级异常映射策略。这种方法整合了原始图像和带特征的数据,增强了细胞遗传学家对预测结果的可解释性。此外,我们实现了一种将鉴别器与条件随机场热图生成器配对的集成方法。这种组合显著降低了异常筛选中的假阳性率。我们在异常筛选和结构异常区域分割方面对我们提出的框架与最先进的(SOTA)方法进行了基准测试。我们的结果表明该框架具有领先的效果,并大大降低了高假阳性率。它在灵敏度和分割准确性方面也表现出卓越的性能。能够一致地识别异常区域表明我们的模型具有显著的临床实用性和高模型可解释性。BRChromNet 是开源的,并可在 https://github.com/frankchen121212/BR-ChromNet 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验