呼吁更好地验证阿片类药物过量风险算法。

A call for better validation of opioid overdose risk algorithms.

机构信息

Department of Health Policy, Stanford University, Stanford, California, USA.

Program Evaluation Resource Center, Office of Mental Health and Suicide Prevention, US Department of Veterans Affairs, Menlo Park, California, USA.

出版信息

J Am Med Inform Assoc. 2023 Sep 25;30(10):1741-1746. doi: 10.1093/jamia/ocad110.

Abstract

Clinical decision support (CDS) systems powered by predictive models have the potential to improve the accuracy and efficiency of clinical decision-making. However, without sufficient validation, these systems have the potential to mislead clinicians and harm patients. This is especially true for CDS systems used by opioid prescribers and dispensers, where a flawed prediction can directly harm patients. To prevent these harms, regulators and researchers have proposed guidance for validating predictive models and CDS systems. However, this guidance is not universally followed and is not required by law. We call on CDS developers, deployers, and users to hold these systems to higher standards of clinical and technical validation. We provide a case study on two CDS systems deployed on a national scale in the United States for predicting a patient's risk of adverse opioid-related events: the Stratification Tool for Opioid Risk Mitigation (STORM), used by the Veterans Health Administration, and NarxCare, a commercial system.

摘要

临床决策支持(CDS)系统通过预测模型提供支持,有可能提高临床决策的准确性和效率。然而,如果没有充分的验证,这些系统有可能误导临床医生并危害患者。对于阿片类药物处方者和配药者使用的 CDS 系统来说,这种情况尤其如此,因为有缺陷的预测可能会直接危害患者。为了防止这些危害,监管机构和研究人员已经提出了验证预测模型和 CDS 系统的指南。然而,这些指南并没有被普遍遵循,也没有被法律所要求。我们呼吁 CDS 开发者、部署者和使用者对这些系统提出更高的临床和技术验证标准。我们提供了一个案例研究,研究了在美国全国范围内部署的两个用于预测患者阿片类药物相关不良事件风险的 CDS 系统:退伍军人事务部使用的阿片类药物风险缓解分层工具(STORM)和商业系统 NarxCare。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/baac/10531142/ddd9b27a96a5/ocad110f1.jpg

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索