Suppr超能文献

开发和验证一种机器学习算法,以预测美国两个州医疗补助受益人的阿片类药物过量:预后建模研究。

Developing and validating a machine-learning algorithm to predict opioid overdose in Medicaid beneficiaries in two US states: a prognostic modelling study.

机构信息

Department of Pharmaceutical Outcomes and Policy, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Drug Evaluation and Safety, College of Pharmacy, University of Florida, Gainesville, FL, USA.

Department of Health Policy and Management, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pharmaceutical Policy and Prescribing, Health Policy Institute, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Lancet Digit Health. 2022 Jun;4(6):e455-e465. doi: 10.1016/S2589-7500(22)00062-0.

Abstract

BACKGROUND

Little is known about whether machine-learning algorithms developed to predict opioid overdose using earlier years and from a single state will perform as well when applied to other populations. We aimed to develop a machine-learning algorithm to predict 3-month risk of opioid overdose using Pennsylvania Medicaid data and externally validated it in two data sources (ie, later years of Pennsylvania Medicaid data and data from a different state).

METHODS

This prognostic modelling study developed and validated a machine-learning algorithm to predict overdose in Medicaid beneficiaries with one or more opioid prescription in Pennsylvania and Arizona, USA. To predict risk of hospital or emergency department visits for overdose in the subsequent 3 months, we measured 284 potential predictors from pharmaceutical and health-care encounter claims data in 3-month periods, starting 3 months before the first opioid prescription and continuing until loss to follow-up or study end. We developed and internally validated a gradient-boosting machine algorithm to predict overdose using 2013-16 Pennsylvania Medicaid data (n=639 693). We externally validated the model using (1) 2017-18 Pennsylvania Medicaid data (n=318 585) and (2) 2015-17 Arizona Medicaid data (n=391 959). We reported several prediction performance metrics (eg, C-statistic, positive predictive value). Beneficiaries were stratified into risk-score subgroups to support clinical use.

FINDINGS

A total of 8641 (1·35%) 2013-16 Pennsylvania Medicaid beneficiaries, 2705 (0·85%) 2017-18 Pennsylvania Medicaid beneficiaries, and 2410 (0·61%) 2015-17 Arizona beneficiaries had one or more overdose during the study period. C-statistics for the algorithm predicting 3-month overdoses developed from the 2013-16 Pennsylvania training dataset and validated on the 2013-16 Pennsylvania internal validation dataset, 2017-18 Pennsylvania external validation dataset, and 2015-17 Arizona external validation dataset were 0·841 (95% CI 0·835-0·847), 0·828 (0·822-0·834), and 0·817 (0·807-0·826), respectively. In external validation datasets, 71 361 (22·4%) of 318 585 2017-18 Pennsylvania beneficiaries were in high-risk subgroups (positive predictive value of 0·38-4·08%; capturing 73% of overdoses in the subsequent 3 months) and 40 041 (10%) of 391 959 2015-17 Arizona beneficiaries were in high-risk subgroups (positive predictive value of 0·19-1·97%; capturing 55% of overdoses). Lower risk subgroups in both validation datasets had few individuals (≤0·2%) with an overdose.

INTERPRETATION

A machine-learning algorithm predicting opioid overdose derived from Pennsylvania Medicaid data performed well in external validation with more recent Pennsylvania data and with Arizona Medicaid data. The algorithm might be valuable for overdose risk prediction and stratification in Medicaid beneficiaries.

FUNDING

National Institute of Health, National Institute on Drug Abuse, National Institute on Aging.

摘要

背景

使用早期数据和来自单一州的机器学习算法来预测阿片类药物过量,其在应用于其他人群时的效果如何,目前知之甚少。我们旨在开发一种使用宾夕法尼亚州医疗补助数据预测 3 个月阿片类药物过量风险的机器学习算法,并在两个数据源(即宾夕法尼亚州医疗补助数据的后期年份和来自另一个州的数据)中对其进行外部验证。

方法

这项预后建模研究开发并验证了一种使用美国宾夕法尼亚州和亚利桑那州医疗补助计划的一个或多个阿片类药物处方的受益人的机器学习算法来预测过量的风险。为了预测随后 3 个月内因过量而住院或急诊的风险,我们在 3 个月的时间内从药物和医疗保健就诊记录数据中测量了 284 个潜在的预测因素,从第一个阿片类药物处方前 3 个月开始,一直持续到随访或研究结束。我们使用 2013-16 年宾夕法尼亚州医疗补助数据(n=639693)开发并内部验证了梯度提升机算法来预测过量。我们使用(1)2017-18 年宾夕法尼亚州医疗补助数据(n=318585)和(2)2015-17 年亚利桑那州医疗补助数据(n=391959)进行外部验证。我们报告了几种预测性能指标(例如,C 统计量、阳性预测值)。根据风险评分亚组对受益人进行分层,以支持临床使用。

发现

在研究期间,共有 8641 名(1.35%)2013-16 年宾夕法尼亚州医疗补助计划受益人和 2705 名(0.85%)2017-18 年宾夕法尼亚州医疗补助计划受益人和 2410 名(0.61%)2015-17 年亚利桑那州医疗补助计划受益发生了一次或多次过量。从 2013-16 年宾夕法尼亚州培训数据集开发并在 2013-16 年宾夕法尼亚州内部验证数据集、2017-18 年宾夕法尼亚州外部验证数据集和 2015-17 年亚利桑那州外部验证数据集上验证的预测 3 个月内过量的算法的 C 统计量分别为 0.841(95%CI 0.835-0.847)、0.828(0.822-0.834)和 0.817(0.807-0.826)。在外部验证数据集中,2017-18 年宾夕法尼亚州的 318585 名受益人中,有 71361 名(22.4%)处于高风险亚组(阳性预测值为 0.38-4.08%;捕获随后 3 个月内 73%的过量),而 391959 名 2015-17 年亚利桑那州的受益人中,有 40041 名(10%)处于高风险亚组(阳性预测值为 0.19-1.97%;捕获随后 3 个月内 55%的过量)。两个验证数据集的低风险亚组中,仅有少数个体(≤0.2%)发生过量。

解释

从宾夕法尼亚州医疗补助数据中得出的预测阿片类药物过量的机器学习算法在宾夕法尼亚州最新数据和亚利桑那州医疗补助数据的外部验证中表现良好。该算法可能对医疗补助计划受益人的过量风险预测和分层具有重要价值。

资助

美国国立卫生研究院、国家药物滥用研究所、国家老龄化研究所。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5eeb/9236281/a28a86a5de16/nihms-1810681-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验