Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588 USA; USA.
Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
Metab Eng. 2023 Sep;79:66-77. doi: 10.1016/j.ymben.2023.06.011. Epub 2023 Jul 8.
Vitamin E tocochromanols are generated in plants by prenylation of homogentisate using geranylgeranyl diphosphate (GGDP) for tocotrienol biosynthesis and phytyl diphosphate (PDP) for tocopherol biosynthesis. Homogentisate geranylgeranyl transferase (HGGT), which uses GGDP for prenylation, is a proven target for oilseed tocochromanol biofortification that effectively bypasses the chlorophyll-linked pathway that limits PDP for vitamin E biosynthesis. In this report, we explored the feasibility of maximizing tocochromanol production in the oilseed crop camelina (Camelina sativa) by combining seed-specific HGGT expression with increased biosynthesis and/or reduced homogentisate catabolism. Plastid-targeted Escherichia coli TyrA-encoded chorismate mutase/prephenate dehydrogenase and Arabidopsis hydroxyphenylpyruvate dioxygenase (HPPD) cDNA were co-expressed in seeds to bypass feedback-regulated steps and increase flux into homogentisate biosynthesis. Homogentisate catabolism was also suppressed by seed-specific RNAi of the gene for homogentisate oxygenase (HGO), which initiates homogentisate degradation. In the absence of HGGT expression, tocochromanols were increased by ∼2.5-fold with HPPD/TyrA co-expression, and ∼1.4-fold with HGO suppression compared to levels in non-transformed seeds. No further increase in tocochromanols was observed in HPPD/TyrA lines with the addition of HGO RNAi. HGGT expression alone increased tocochromanol concentrations in seeds by ∼four-fold to ≤1400 μg/g seed weight. When combined with HPPD/TyrA co-expression, we obtained an additional three-fold increase in tocochromanol concentrations indicating that homogentisate concentrations limit HGGT's capacity for maximal tocochromanol production. The addition of HGO RNAi further increased tocochromanol concentrations to 5000 μg/g seed weight, an unprecedented tocochromanol concentration in an engineered oilseed. Metabolomic data obtained from engineered seeds provide insights into phenotypic changes associated with "extreme" tocochromanol production.
生育三烯酚是植物利用香叶基香叶基二磷酸(GGDP)合成生育三烯酚和叶绿醇二磷酸(PDP)合成生育酚时,对 4-羟基-3-甲基戊烯酰基辅酶 A 进行 prenylation 生成的。使用 GGDP 进行 prenylation 的 4-羟基-3-甲基戊烯酰基辅酶 A 转移酶(HGGT)是一种经过验证的油籽生育三烯酚生物强化靶点,可有效绕过限制维生素 E 生物合成的叶绿素相关途径。在本报告中,我们通过组合种子特异性 HGGT 表达与增加生物合成和/或减少 4-羟基-3-甲基戊烯酰基辅酶 A 分解代谢,探索了在油籽作物荠蓝(Camelina sativa)中最大化生育三烯酚产量的可行性。质体靶向的大肠杆菌 TyrA 编码的分支酸变位酶/预苯酸脱氢酶和拟南芥 4-羟基苯基丙酮酸双加氧酶(HPPD)cDNA 在种子中共表达以绕过受反馈调节的步骤并增加 4-羟基-3-甲基戊烯酰基辅酶 A 生物合成通量。通过种子特异性 RNAi 抑制 4-羟基-3-甲基戊烯酰基辅酶 A 加氧酶(HGO)基因,也抑制了 4-羟基-3-甲基戊烯酰基辅酶 A 的分解代谢,HGO 基因启动 4-羟基-3-甲基戊烯酰基辅酶 A 的降解。在没有 HGGT 表达的情况下,与非转化种子相比,HPPD/TyrA 共表达使生育三烯酚增加了约 2.5 倍,HGO 抑制使生育三烯酚增加了约 1.4 倍。在 HPPD/TyrA 系中添加 HGO RNAi 后,生育三烯酚没有进一步增加。单独表达 HGGT 使种子中的生育三烯酚浓度增加了约 4 倍,达到≤1400μg/g 种子重量。当与 HPPD/TyrA 共表达结合使用时,生育三烯酚浓度又增加了 3 倍,表明 4-羟基-3-甲基戊烯酰基辅酶 A 的浓度限制了 HGGT 生产生育三烯酚的最大能力。添加 HGO RNAi 进一步将生育三烯酚浓度增加到 5000μg/g 种子重量,这是工程化油籽中前所未有的生育三烯酚浓度。从工程化种子中获得的代谢组学数据提供了与“极端”生育三烯酚生产相关的表型变化的见解。