Suppr超能文献

基于原型的负混合对比学习在卫星遥测异常检测中的应用。

Contrastive Learning with Prototype-Based Negative Mixing for Satellite Telemetry Anomaly Detection.

机构信息

National Space Science Center, Chinese Academy of Sciences, Beijing 101499, China.

Department of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 101408, China.

出版信息

Sensors (Basel). 2023 May 13;23(10):4723. doi: 10.3390/s23104723.

Abstract

Telemetry data are the most important basis for ground operators to assess the status of satellites in orbit, and telemetry data-based anomaly detection has become a key tool to improve the reliability and safety of spacecrafts. Recent research on anomaly detection focuses on constructing a normal profile of telemetry data using deep learning methods. However, these methods cannot effectively capture the complex correlations between the various dimensions of telemetry data, and thus cannot accurately model the normal profile of telemetry data, resulting in poor anomaly detection performance. This paper presents CLPNM-AD, contrastive learning with prototype-based negative mixing for correlation anomaly detection. The CLPNM-AD framework first employs an augmentation process with random feature corruption to generate augmented samples. Following that, a consistency strategy is employed to capture the prototype of samples, and then prototype-based negative mixing contrastive learning is used to build a normal profile. Finally, a prototype-based anomaly score function is proposed for anomaly decision-making. Experimental results on public datasets and datasets from the actual scientific satellite mission show that CLPNM-AD outperforms the baseline methods, achieves up to 11.5% improvement based on the standard F1 score and is more robust against noise.

摘要

遥测数据是地面操作人员评估卫星轨道状态的最重要依据,基于遥测数据的异常检测已成为提高航天器可靠性和安全性的关键工具。最近的异常检测研究集中在使用深度学习方法构建遥测数据的正常分布。然而,这些方法无法有效捕捉遥测数据各维度之间的复杂相关性,因此无法准确地对遥测数据的正常分布进行建模,导致异常检测性能较差。本文提出了 CLPNM-AD,一种基于对比学习的原型负混合相关异常检测方法。CLPNM-AD 框架首先采用随机特征破坏的增强过程生成增强样本。然后,采用一致性策略来捕获样本的原型,再采用基于原型的负混合对比学习来构建正常分布。最后,提出了基于原型的异常得分函数进行异常决策。在公共数据集和实际科学卫星任务数据集上的实验结果表明,CLPNM-AD 优于基线方法,在标准 F1 得分上最高可提高 11.5%,并且对噪声更鲁棒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5255/10223175/cb9f8b9e100b/sensors-23-04723-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验