Suppr超能文献

通过阶段训练去噪自编码器检测卫星电源子系统异常。

Detecting Anomalies of Satellite Power Subsystem via Stage-Training Denoising Autoencoders.

作者信息

Jin Weihua, Sun Bo, Li Zhidong, Zhang Shijie, Chen Zhonggui

机构信息

Research Center of Satellite Technology, Harbin Institute of Technology, Harbin 150080, China.

Beijing Institute of Spacecraft System Engineering, Beijing 100094, China.

出版信息

Sensors (Basel). 2019 Jul 22;19(14):3216. doi: 10.3390/s19143216.

Abstract

Satellite telemetry data contains satellite status information, and ground-monitoring personnel need to promptly detect satellite anomalies from these data. This paper takes the satellite power subsystem as an example and presents a reliable anomaly detection method. Due to the lack of abnormal data, the autoencoder is a powerful method for unsupervised anomaly detection. This study proposes a novel stage-training denoising autoencoder (ST-DAE) that trains the features, in stages. This novel method has better reconstruction capabilities in comparison to common autoencoders, sparse autoencoders, and denoising autoencoders. Meanwhile, a cluster-based anomaly threshold determination method is proposed. In this study, specific methods were designed to evaluate the autoencoder performance in three perspectives. Experiments were carried out on real satellite telemetry data, and the results showed that the proposed ST-DAE generally outperformed the autoencoders, in comparison.

摘要

卫星遥测数据包含卫星状态信息,地面监测人员需要从这些数据中及时检测出卫星异常情况。本文以卫星电源子系统为例,提出了一种可靠的异常检测方法。由于缺乏异常数据,自动编码器是一种强大的无监督异常检测方法。本研究提出了一种新颖的阶段训练去噪自动编码器(ST-DAE),该方法分阶段训练特征。与普通自动编码器、稀疏自动编码器和去噪自动编码器相比,这种新方法具有更好的重构能力。同时,提出了一种基于聚类的异常阈值确定方法。在本研究中,设计了具体方法从三个角度评估自动编码器性能。对真实卫星遥测数据进行了实验,结果表明,相比之下,所提出的ST-DAE总体上优于自动编码器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd72/6679529/6121fbec660f/sensors-19-03216-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验