Suppr超能文献

基于模型降阶技术的峰值力原子力显微镜分析。

PeakForce AFM Analysis Enhanced with Model Reduction Techniques.

机构信息

Université Paris-Saclay/CentraleSupélec/ENS Paris-Saclay/C.N.R.S., LMPS-Laboratoire de Mécanique Paris-Saclay, 91190 Gif-sur-Yvette, France.

LMS, C.N.R.S., École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France.

出版信息

Sensors (Basel). 2023 May 13;23(10):4730. doi: 10.3390/s23104730.

Abstract

PeakForce quantitative nanomechanical AFM mode (PF-QNM) is a popular AFM technique designed to measure multiple mechanical features (e.g., adhesion, apparent modulus, etc.) simultaneously at the exact same spatial coordinates with a robust scanning frequency. This paper proposes compressing the initial high-dimensional dataset obtained from the PeakForce AFM mode into a subset of much lower dimensionality by a sequence of proper orthogonal decomposition (POD) reduction and subsequent machine learning on the low-dimensionality data. A substantial reduction in user dependency and subjectivity of the extracted results is obtained. The underlying parameters, or "state variables", governing the mechanical response can be easily extracted from the latter using various machine learning techniques. Two samples are investigated to illustrate the proposed procedure (i) a polystyrene film with low-density polyethylene nano-pods and (ii) a PDMS film with carbon-iron particles. The heterogeneity of material, as well as the sharp variation in topography, make the segmentation challenging. Nonetheless, the underlying parameters describing the mechanical response naturally offer a compact representation allowing for a more straightforward interpretation of the high-dimensional force-indentation data in terms of the nature (and proportion) of phases, interfaces, or topography. Finally, those techniques come with a low processing time cost and do not require a prior mechanical model.

摘要

峰值力定量纳米力学原子力显微镜模式(PF-QNM)是一种流行的原子力显微镜技术,旨在以稳健的扫描频率在相同的空间坐标上同时测量多个机械特性(例如粘附力、表观模量等)。本文提出了一种方法,通过一系列适当的正交分解(POD)降维和后续在低维数据上的机器学习,将来自峰值力原子力显微镜模式的初始高维数据集压缩为低维子集。通过这种方法,可以大大减少提取结果的用户依赖性和主观性。可以使用各种机器学习技术从后者轻松提取控制机械响应的基本参数或“状态变量”。研究了两个样本来说明所提出的方法:(i)具有低密度聚乙烯纳米柱的聚苯乙烯膜和(ii)具有碳-铁颗粒的 PDMS 膜。材料的非均质性以及形貌的急剧变化使得分割具有挑战性。然而,描述机械响应的基本参数自然提供了一种紧凑的表示形式,使得可以根据相、界面或形貌的性质(和比例)更直接地解释高维力-压痕数据。最后,这些技术具有较低的处理时间成本,并且不需要预先的机械模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30a3/10224499/5c4e76d75d09/sensors-23-04730-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验