Cognitive Neuroimaging Unit, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CEA, Université Paris-Saclay, NeuroSpin Center, F-91190 Gif-sur-Yvette, France.
Institut de Neurosciences des Systèmes, U1106, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, F-13005 Marseille, France.
Sensors (Basel). 2023 May 17;23(10):4847. doi: 10.3390/s23104847.
Electrophysiology recordings are frequently affected by artifacts (e.g., subject motion or eye movements), which reduces the number of available trials and affects the statistical power. When artifacts are unavoidable and data are scarce, signal reconstruction algorithms that allow for the retention of sufficient trials become crucial. Here, we present one such algorithm that makes use of large spatiotemporal correlations in neural signals and solves the low-rank matrix completion problem, to fix artifactual entries. The method uses a gradient descent algorithm in lower dimensions to learn the missing entries and provide faithful reconstruction of signals. We carried out numerical simulations to benchmark the method and estimate optimal hyperparameters for actual EEG data. The fidelity of reconstruction was assessed by detecting event-related potentials (ERP) from a highly artifacted EEG time series from human infants. The proposed method significantly improved the standardized error of the mean in ERP group analysis and a between-trial variability analysis compared to a state-of-the-art interpolation technique. This improvement increased the statistical power and revealed significant effects that would have been deemed insignificant without reconstruction. The method can be applied to any time-continuous neural signal where artifacts are sparse and spread out across epochs and channels, increasing data retention and statistical power.
电生理学记录经常受到伪影(例如,主体运动或眼球运动)的影响,这会减少可用试验的数量,并影响统计功效。当伪影不可避免且数据稀缺时,允许保留足够试验的信号重建算法变得至关重要。在这里,我们提出了一种这样的算法,该算法利用神经信号中的大时空相关性,并解决低秩矩阵完成问题,以修复人为因素条目。该方法使用低维中的梯度下降算法来学习缺失的条目并提供信号的忠实重建。我们进行了数值模拟来基准测试该方法,并估计实际 EEG 数据的最佳超参数。通过从人类婴儿的高度人为 EEG 时间序列中检测事件相关电位 (ERP) 来评估重建的保真度。与最先进的插值技术相比,该方法在 ERP 组分析和试验间变异性分析中显著提高了均方误差的标准化误差。这种改进增加了统计功效,并揭示了如果没有重建可能被认为不显著的显著影响。该方法可应用于任何时间连续的神经信号,其中伪影稀疏分布在各个时期和通道中,从而增加数据保留和统计功效。