Suppr超能文献

自动拒绝:用于脑磁图和脑电图数据的自动伪迹拒绝。

Autoreject: Automated artifact rejection for MEG and EEG data.

机构信息

LTCI, Télécom ParisTech, Université Paris-Saclay, France.

Parietal project-team, INRIA Saclay - Ile de France, France; Cognitive Neuroimaging Unit, Neurospin, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France; Institut du Cerveau et de la Moelle épinière, ICM, PICNIC Lab, F-75013, Paris, France.

出版信息

Neuroimage. 2017 Oct 1;159:417-429. doi: 10.1016/j.neuroimage.2017.06.030. Epub 2017 Jun 20.

Abstract

We present an automated algorithm for unified rejection and repair of bad trials in magnetoencephalography (MEG) and electroencephalography (EEG) signals. Our method capitalizes on cross-validation in conjunction with a robust evaluation metric to estimate the optimal peak-to-peak threshold - a quantity commonly used for identifying bad trials in M/EEG. This approach is then extended to a more sophisticated algorithm which estimates this threshold for each sensor yielding trial-wise bad sensors. Depending on the number of bad sensors, the trial is then repaired by interpolation or by excluding it from subsequent analysis. All steps of the algorithm are fully automated thus lending itself to the name Autoreject. In order to assess the practical significance of the algorithm, we conducted extensive validation and comparisons with state-of-the-art methods on four public datasets containing MEG and EEG recordings from more than 200 subjects. The comparisons include purely qualitative efforts as well as quantitatively benchmarking against human supervised and semi-automated preprocessing pipelines. The algorithm allowed us to automate the preprocessing of MEG data from the Human Connectome Project (HCP) going up to the computation of the evoked responses. The automated nature of our method minimizes the burden of human inspection, hence supporting scalability and reliability demanded by data analysis in modern neuroscience.

摘要

我们提出了一种用于脑磁图(MEG)和脑电图(EEG)信号中不良试验统一拒绝和修复的自动化算法。我们的方法利用交叉验证和稳健的评估指标来估计最佳峰峰值阈值 - 这是用于识别 M/EEG 中不良试验的常用数量。然后,该方法扩展到更复杂的算法,该算法为每个传感器估计此阈值,从而产生逐试不良传感器。根据不良传感器的数量,然后通过插值或从后续分析中排除该试验来修复该试验。该算法的所有步骤都是全自动的,因此得名 Autoreject。为了评估该算法的实际意义,我们在包含来自 200 多个受试者的 MEG 和 EEG 记录的四个公共数据集上进行了广泛的验证和与最先进方法的比较。这些比较包括纯粹的定性努力以及针对人类监督和半自动预处理管道的定量基准测试。该算法允许我们对人类连接体计划(HCP)的 MEG 数据进行自动化预处理,直至计算诱发反应。我们方法的自动化性质最大限度地减少了人工检查的负担,因此支持现代神经科学数据分析所需的可扩展性和可靠性。

相似文献

1
Autoreject: Automated artifact rejection for MEG and EEG data.自动拒绝:用于脑磁图和脑电图数据的自动伪迹拒绝。
Neuroimage. 2017 Oct 1;159:417-429. doi: 10.1016/j.neuroimage.2017.06.030. Epub 2017 Jun 20.
7
MNE software for processing MEG and EEG data.MEG 和 EEG 数据处理的 MNE 软件。
Neuroimage. 2014 Feb 1;86:446-60. doi: 10.1016/j.neuroimage.2013.10.027. Epub 2013 Oct 24.

引用本文的文献

6
Trial-by-trial detection of cognitive events in neural time-series.神经时间序列中认知事件的逐次试验检测
Imaging Neurosci (Camb). 2024 Dec 16;2. doi: 10.1162/imag_a_00400. eCollection 2024.

本文引用的文献

5
A multi-subject, multi-modal human neuroimaging dataset.多主体、多模态人类神经影像学数据集。
Sci Data. 2015 Jan 20;2:150001. doi: 10.1038/sdata.2015.1. eCollection 2015.
6
OMEGA: The Open MEG Archive.欧米伽:开放式脑磁图存档库。
Neuroimage. 2016 Jan 1;124(Pt B):1182-1187. doi: 10.1016/j.neuroimage.2015.04.028. Epub 2015 Apr 18.
8
10
MEG and EEG data analysis with MNE-Python.使用 MNE-Python 进行 MEG 和 EEG 数据分析。
Front Neurosci. 2013 Dec 26;7:267. doi: 10.3389/fnins.2013.00267.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验