Suppr超能文献

基于多域信息融合的变速箱故障诊断方法。

Gearbox Fault Diagnosis Method Based on Multidomain Information Fusion.

机构信息

School of Mechanical Electrical and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China.

State Key Laboratory of Performance Monitoring Protecting of Rail Transit Infrastructure, East China Jiaotong University, Nanchang 330013, China.

出版信息

Sensors (Basel). 2023 May 19;23(10):4921. doi: 10.3390/s23104921.

Abstract

Traditional methods of gearbox fault diagnosis rely heavily on manual experience. To address this problem, our study proposes a gearbox fault diagnosis method based on multidomain information fusion. An experimental platform consisting of a JZQ250 fixed-axis gearbox was built. An acceleration sensor was used to obtain the vibration signal of the gearbox. Singular value decomposition (SVD) was used to preprocess the signal in order to reduce noise, and the processed vibration signal was subjected to short-time Fourier transform to obtain a two-dimensional time-frequency map. A multidomain information fusion convolutional neural network (CNN) model was constructed. Channel 1 was a one-dimensional convolutional neural network (1DCNN) model that input a one-dimensional vibration signal, and channel 2 was a two-dimensional convolutional neural network (2DCNN) model that input short-time Fourier transform (STFT) time-frequency images. The feature vectors extracted using the two channels were then fused into feature vectors for input into the classification model. Finally, support vector machines (SVM) were used to identify and classify the fault types. The model training performance used multiple methods: training set, verification set, loss curve, accuracy curve and t-SNE visualization (t-SNE). Through experimental verification, the method proposed in this paper was compared with FFT-2DCNN, 1DCNN-SVM and 2DCNN-SVM in terms of gearbox fault recognition performance. The model proposed in this paper had the highest fault recognition accuracy (98.08%).

摘要

传统的齿轮箱故障诊断方法主要依赖于人工经验。为了解决这个问题,我们的研究提出了一种基于多域信息融合的齿轮箱故障诊断方法。建立了一个由 JZQ250 定轴齿轮箱组成的实验平台。使用加速度传感器获取齿轮箱的振动信号。采用奇异值分解(SVD)对信号进行预处理,以降低噪声,对处理后的振动信号进行短时傅里叶变换,得到二维时频图。构建了一个多域信息融合卷积神经网络(CNN)模型。通道 1 是一个一维卷积神经网络(1DCNN)模型,输入一维振动信号,通道 2 是一个二维卷积神经网络(2DCNN)模型,输入短时傅里叶变换(STFT)时频图像。然后将这两个通道提取的特征向量融合成特征向量,输入到分类模型中。最后,使用支持向量机(SVM)对故障类型进行识别和分类。模型训练性能采用了多种方法:训练集、验证集、损失曲线、准确率曲线和 t-SNE 可视化(t-SNE)。通过实验验证,将本文提出的方法与 FFT-2DCNN、1DCNN-SVM 和 2DCNN-SVM 在齿轮箱故障识别性能方面进行了比较。本文提出的模型具有最高的故障识别准确率(98.08%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/450e/10223782/be3ead4cfb21/sensors-23-04921-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验