Suppr超能文献

基于奇异值分解和图傅里叶变换的风力发电机组齿轮箱故障诊断方法研究

Research on a Wind Turbine Gearbox Fault Diagnosis Method Using Singular Value Decomposition and Graph Fourier Transform.

作者信息

Chen Lan, Zhang Xiangfeng, Li Zhanxiang, Jiang Hong

机构信息

College of Intelligent Manufacturing and Industrial Modernization, Xinjiang University, Urumchi 830017, China.

出版信息

Sensors (Basel). 2024 May 20;24(10):3234. doi: 10.3390/s24103234.

Abstract

Gearboxes operate in challenging environments, which leads to a heightened incidence of failures, and ambient noise further compromises the accuracy of fault diagnosis. To address this issue, we introduce a fault diagnosis method that employs singular value decomposition (SVD) and graph Fourier transform (GFT). Singular values, commonly employed in feature extraction and fault diagnosis, effectively encapsulate various fault states of mechanical equipment. However, prior methods neglect the inter-relationships among singular values, resulting in the loss of subtle fault information concealed within. To precisely and effectively extract subtle fault information from gear vibration signals, this study incorporates graph signal processing (GSP) technology. Following SVD of the original vibration signal, the method constructs a graph signal using singular values as inputs, enabling the capture of topological relationships among these values and the extraction of concealed fault information. Subsequently, the graph signal undergoes a transformation via GFT, facilitating the extraction of fault features from the graph spectral domain. Ultimately, by assessing the Mahalanobis distance between training and testing samples, distinct defect states are discerned and diagnosed. Experimental results on bearing and gear faults demonstrate that the proposed method exhibits enhanced robustness to noise, enabling accurate and effective diagnosis of gearbox faults in environments with substantial noise.

摘要

变速箱在具有挑战性的环境中运行,这导致故障发生率增加,并且环境噪声进一步影响故障诊断的准确性。为了解决这个问题,我们引入一种采用奇异值分解(SVD)和图傅里叶变换(GFT)的故障诊断方法。奇异值常用于特征提取和故障诊断,能有效封装机械设备的各种故障状态。然而,先前的方法忽略了奇异值之间的相互关系,导致隐藏在其中的细微故障信息丢失。为了从齿轮振动信号中精确有效地提取细微故障信息,本研究引入了图信号处理(GSP)技术。在对原始振动信号进行奇异值分解后,该方法以奇异值为输入构建图信号,从而能够捕捉这些值之间的拓扑关系并提取隐藏的故障信息。随后,图信号通过图傅里叶变换进行变换,便于从图谱域中提取故障特征。最终,通过评估训练样本和测试样本之间的马氏距离,识别并诊断出不同的缺陷状态。对轴承和齿轮故障的实验结果表明,所提出的方法对噪声具有更强的鲁棒性,能够在高噪声环境中准确有效地诊断变速箱故障。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d36/11125160/f2d60e621c3d/sensors-24-03234-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验