文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从新鲜茶叶中分离出的LOC1调节巨噬细胞对TLR4激活的反应。

LOC1 Isolated from Fresh Tea Leaves Modulates Macrophage Response to TLR4 Activation.

作者信息

Suzuki Masahiko, Albarracin Leonardo, Tsujikawa Yuji, Fukuyama Kohtaro, Sakane Iwao, Villena Julio, Kitazawa Haruki

机构信息

Central Research Institute, ITO EN Ltd., Shizuoka 421-0516, Japan.

Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan.

出版信息

Foods. 2022 Oct 18;11(20):3257. doi: 10.3390/foods11203257.


DOI:10.3390/foods11203257
PMID:37431006
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9602255/
Abstract

Previously, we demonstrated that LOC1, originally isolated from fresh tea leaves, was able to improve epithelial barrier integrity in in vitro models, suggesting that this strain is an interesting probiotic candidate. In this work, we aimed to continue characterizing the potential probiotic properties of the LOC1 strain, focusing on its immunomodulatory properties in the context of innate immunity triggered by Toll-like receptor 4 (TLR4) activation. These studies were complemented by comparative and functional genomics analysis to characterize the bacterial genes involved in the immunomodulatory capacity. We carried out a transcriptomic study to evaluate the effect of LOC1 on the response of murine macrophages (RAW264.7 cells) to the activation of TLR4. We demonstrated that LOC1 exerts a modulatory effect on lipopolysaccharide (LPS)-induced inflammation, resulting in a differential regulation of immune factor expression in macrophages. The LOC1 strain markedly reduced the LPS-induced expression of some inflammatory cytokines (, , and ) and chemokines (, , , , , and ), while it significantly increased the expression of other cytokines (, , , , , and ), chemokines ( and ), and activation markers (, , , and ) in RAW macrophages. Our results show that LOC1 would enhance the intrinsic functions of macrophages, promoting their protective effects mediated by the stimulation of the Th1 response without affecting the regulatory mechanisms that help control inflammation. In addition, we sequenced the LOC1 genome and performed a genomic characterization. Genomic comparative analysis with the well-known immunomodulatory strains WCSF1 and CRL1506 demonstrated that LOC1 possess a set of adhesion factors and genes involved in the biosynthesis of teichoic acids and lipoproteins that could be involved in its immunomodulatory capacity. The results of this work can contribute to the development of immune-related functional foods containing LOC1.

摘要

此前,我们证明,最初从新鲜茶叶中分离出的LOC1能够在体外模型中改善上皮屏障的完整性,这表明该菌株是一个有潜力的益生菌候选菌株。在这项研究中,我们旨在继续表征LOC1菌株的潜在益生菌特性,重点关注其在Toll样受体4(TLR4)激活引发的固有免疫背景下的免疫调节特性。通过比较基因组学和功能基因组学分析对这些研究进行补充,以表征参与免疫调节能力的细菌基因。我们进行了一项转录组学研究,以评估LOC1对小鼠巨噬细胞(RAW264.7细胞)对TLR4激活反应的影响。我们证明,LOC1对脂多糖(LPS)诱导的炎症具有调节作用,导致巨噬细胞中免疫因子表达的差异调节。LOC1菌株显著降低了LPS诱导的一些炎性细胞因子(、和)和趋化因子(、、、、和)的表达,而它显著增加了RAW巨噬细胞中其他细胞因子(、、、、和)、趋化因子(和)以及激活标志物(、、、和)的表达。我们的结果表明,LOC1会增强巨噬细胞的固有功能,通过刺激Th1反应促进其保护作用,而不会影响有助于控制炎症的调节机制。此外,我们对LOC1基因组进行了测序并进行了基因组表征。与著名的免疫调节菌株WCSF1和CRL1506进行的基因组比较分析表明,LOC1拥有一组可能参与其免疫调节能力的粘附因子以及与磷壁酸和脂蛋白生物合成相关的基因。这项工作的结果有助于开发含有LOC1的免疫相关功能性食品。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/0b351698b80f/foods-11-03257-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/904948c204e8/foods-11-03257-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/0a16307c41da/foods-11-03257-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/a3ec143a8e84/foods-11-03257-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/4b7533af03f4/foods-11-03257-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/9c7467b81a0e/foods-11-03257-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/df01758e9c6f/foods-11-03257-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/c0d591cbfb6f/foods-11-03257-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/b46d44ffa2f2/foods-11-03257-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/c3c18abf9b4d/foods-11-03257-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/12d1034b569b/foods-11-03257-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/226fffc40bcd/foods-11-03257-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/00b1332c720b/foods-11-03257-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/0b351698b80f/foods-11-03257-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/904948c204e8/foods-11-03257-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/0a16307c41da/foods-11-03257-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/a3ec143a8e84/foods-11-03257-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/4b7533af03f4/foods-11-03257-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/9c7467b81a0e/foods-11-03257-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/df01758e9c6f/foods-11-03257-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/c0d591cbfb6f/foods-11-03257-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/b46d44ffa2f2/foods-11-03257-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/c3c18abf9b4d/foods-11-03257-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/12d1034b569b/foods-11-03257-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/226fffc40bcd/foods-11-03257-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/00b1332c720b/foods-11-03257-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659f/9602255/0b351698b80f/foods-11-03257-g013.jpg

相似文献

[1]
LOC1 Isolated from Fresh Tea Leaves Modulates Macrophage Response to TLR4 Activation.

Foods. 2022-10-18

[2]
Isolation, identification, and impact on intestinal barrier integrity of from fresh tea leaves .

Biosci Microbiota Food Health. 2021

[3]
Lipoteichoic Acid Is Involved in the Ability of the Immunobiotic Strain CRL1506 to Modulate the Intestinal Antiviral Innate Immunity Triggered by TLR3 Activation.

Front Immunol. 2020

[4]
Strains Modulate Intestinal Innate Immune Response and Increase Resistance to Enterotoxigenic Infection.

Microorganisms. 2022-12-25

[5]
Extracellular vesicles from a novel strain suppress inflammation and promote M2 macrophage polarization.

Front Immunol. 2024

[6]
Transcriptomic Analysis of the Innate Antiviral Immune Response in Porcine Intestinal Epithelial Cells: Influence of Immunobiotic Lactobacilli.

Front Immunol. 2017-2-2

[7]
Immunobiotic Lactobacilli Improve Resistance of Respiratory Epithelial Cells to SARS-CoV-2 Infection.

Pathogens. 2021-9-15

[8]
Alleviation of LPS-Induced Inflammation and Septic Shock by K8 Lysates.

Int J Mol Sci. 2021-5-31

[9]
Immunomodulatory Activity on Human Macrophages by Cell-Free Supernatants to Explore the Probiotic and Postbiotic Potential of Lactiplantibacillus plantarum Strains of Plant Origin.

Probiotics Antimicrob Proteins. 2024-6

[10]
Genomic Assessment of Potential Probiotic CRM56-2 Isolated from Fermented Tea Leaves.

Trop Life Sci Res. 2024-7

引用本文的文献

[1]
Modulation of Macrophages TLR4-Mediated Transcriptional Response by CRL1505 and CRL1506.

Int J Mol Sci. 2025-3-17

[2]
Reposition: Focalizing β-Alanine Metabolism and the Anti-Inflammatory Effects of Its Metabolite Based on Multi-Omics Datasets.

Int J Mol Sci. 2024-9-24

本文引用的文献

[1]
Wall teichoic acid-dependent phagocytosis of intact cell walls of elicits IL-12 secretion from macrophages.

Front Microbiol. 2022-8-9

[2]
Comparative Genomics of : Insights Into Probiotic Markers in Strains Isolated From the Human Gastrointestinal Tract and Fermented Foods.

Front Microbiol. 2022-5-18

[3]
Immunomodulatory effects of mixed on lipopolysaccharide-induced intestinal injury in mice.

Food Funct. 2022-5-10

[4]
Immunostimulatory Effect of Heat-Killed Probiotics on RAW264.7 Macrophages.

J Microbiol Biotechnol. 2022-5-28

[5]
Selective Extracellular Signal-Regulated Kinase 1/2 (ERK1/2) Inhibition by the SCH772984 Compound Attenuates In Vitro and In Vivo Inflammatory Responses and Prolongs Survival in Murine Sepsis Models.

Int J Mol Sci. 2021-9-22

[6]
Isolation, identification, and impact on intestinal barrier integrity of from fresh tea leaves .

Biosci Microbiota Food Health. 2021

[7]
Comprehensive pan-genome analysis of Lactiplantibacillus plantarum complete genomes.

J Appl Microbiol. 2022-1

[8]
Strain diversity of plant-associated Lactiplantibacillus plantarum.

Microb Biotechnol. 2021-9

[9]
as a Potential Adjuvant and Delivery System for the Development of SARS-CoV-2 Oral Vaccines.

Microorganisms. 2021-3-26

[10]
Immunomodulating effects of 13- and 16-hydroxylated docosahexaenoyl ethanolamide in LPS stimulated RAW264.7 macrophages.

Biochim Biophys Acta Mol Cell Biol Lipids. 2021-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索