Suppr超能文献

儿童和青少年心理健康预测模型:近期研究中方法学与报告的系统评价

Prediction models for child and adolescent mental health: A systematic review of methodology and reporting in recent research.

作者信息

Senior Morwenna, Fanshawe Thomas, Fazel Mina, Fazel Seena

机构信息

Department of Psychiatry Oxford Health NHS Foundation Trust, University of Oxford Oxford UK.

Nuffield Department of Primary Care Health Sciences University of Oxford Oxford UK.

出版信息

JCPP Adv. 2021 Sep 24;1(3):e12034. doi: 10.1002/jcv2.12034. eCollection 2021 Oct.

Abstract

BACKGROUND

There has been a rapid growth in the publication of new prediction models relevant to child and adolescent mental health. However, before their implementation into clinical services, it is necessary to appraise the quality of their methods and reporting. We conducted a systematic review of new prediction models in child and adolescent mental health, and examined their development and validation.

METHOD

We searched five databases for studies developing or validating multivariable prediction models for individuals aged 18 years old or younger from 1 January 2018 to 18 February 2021. Quality of reporting was assessed using the Transparent Reporting of a multivariable prediction models for Individual Prognosis Or Diagnosis checklist, and quality of methodology using items based on expert guidance and the PROBAST tool.

RESULTS

We identified 100 eligible studies: 41 developing a new prediction model, 48 validating an existing model and 11 that included both development and validation. Most publications ( = 75) reported a model discrimination measure, while 26 investigations reported calibration. Of 52 new prediction models, six (12%) were for suicidal outcomes, 18 (35%) for future diagnosis, five (10%) for child maltreatment. Other outcomes included violence, crime, and functional outcomes. Eleven new models (21%) were developed for use in high-risk populations. Of development studies, around a third were sufficiently statistically powered ( = 16%, 31%), while this was lower for validation investigations ( = 12, 25%). In terms of performance, the discrimination (as measured by the C-statistic) for new models ranged from 0.57 for a tool predicting ADHD diagnosis in an external validation sample to 0.99 for a machine learning model predicting foster care permanency.

CONCLUSIONS

Although some tools have recently been developed for child and adolescent mental health for prognosis and child maltreatment, none can be currently recommended for clinical practice due to a combination of methodological limitations and poor model performance. New work needs to use ensure sufficient sample sizes, representative samples, and testing of model calibration.

摘要

背景

与儿童和青少年心理健康相关的新预测模型的发表数量迅速增长。然而,在将其应用于临床服务之前,有必要评估其方法和报告的质量。我们对儿童和青少年心理健康方面的新预测模型进行了系统综述,并考察了它们的开发和验证情况。

方法

我们在五个数据库中检索了2018年1月1日至2021年2月18日期间为18岁及以下个体开发或验证多变量预测模型的研究。使用个体预后或诊断的多变量预测模型的透明报告清单评估报告质量,使用基于专家指导的项目和PROBAST工具评估方法质量。

结果

我们确定了100项符合条件的研究:41项开发新的预测模型,48项验证现有模型,11项既包括开发又包括验证。大多数出版物(n = 75)报告了模型区分度测量,而26项研究报告了校准情况。在52个新的预测模型中,6个(12%)用于自杀结局,18个(35%)用于未来诊断,5个(10%)用于儿童虐待。其他结局包括暴力、犯罪和功能结局。11个新模型(21%)是为高危人群开发的。在开发研究中,约三分之一具有足够的统计效力(n = 16,31%),而在验证研究中这一比例较低(n = 12,25%)。在性能方面,新模型的区分度(以C统计量衡量)范围从外部验证样本中预测注意力缺陷多动障碍(ADHD)诊断的工具的0.57到预测寄养永久性的机器学习模型的0.99。

结论

尽管最近已经开发了一些用于儿童和青少年心理健康预后及儿童虐待的工具,但由于方法学上的局限性和模型性能不佳,目前没有一个可以推荐用于临床实践。新的研究需要确保足够的样本量、具有代表性的样本以及模型校准测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d860/10242964/bdb2229172fc/JCV2-1-e12034-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验