Department of Microbiology, Ohio State University , Columbus, Ohio, USA.
Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University , Columbus, Ohio, USA.
mBio. 2023 Aug 31;14(4):e0328422. doi: 10.1128/mbio.03284-22. Epub 2023 Jul 11.
Peroxisomes are versatile eukaryotic organelles essential for many functions in fungi, including fatty acid metabolism, reactive oxygen species detoxification, and secondary metabolite biosynthesis. A suite of Pex proteins (peroxins) maintains peroxisomes, while peroxisomal matrix enzymes execute peroxisome functions. Insertional mutagenesis identified peroxin genes as essential components supporting the intraphagosomal growth of the fungal pathogen . Disruption of the peroxins Pex5, Pex10, or Pex33 in prevented peroxisome import of proteins targeted to the organelle via the PTS1 pathway. This loss of peroxisome protein import limited intracellular growth in macrophages and attenuated virulence in an acute histoplasmosis infection model. Interruption of the alternate PTS2 import pathway also attenuated virulence, although only at later time points of infection. The Sid1 and Sid3 siderophore biosynthesis proteins contain a PTS1 peroxisome import signal and localize to the peroxisome. Loss of either the PTS1 or PTS2 peroxisome import pathway impaired siderophore production and iron acquisition in , demonstrating compartmentalization of at least some biosynthetic steps for hydroxamate siderophore biosynthesis. However, the loss of PTS1-based peroxisome import caused earlier virulence attenuation than either the loss of PTS2-based protein import or the loss of siderophore biosynthesis, indicating additional PTS1-dependent peroxisomal functions are important for virulence. Furthermore, disruption of the Pex11 peroxin also attenuated virulence independently of peroxisomal protein import and siderophore biosynthesis. These findings demonstrate peroxisomes contribute to pathogenesis by facilitating siderophore biosynthesis and another unidentified role(s) for the organelle during fungal virulence. IMPORTANCE The fungal pathogen infects host phagocytes and establishes a replication-permissive niche within the cells. To do so, overcomes and subverts antifungal defense mechanisms which include the limitation of essential micronutrients. replication within host cells requires multiple distinct functions of the fungal peroxisome organelle. These peroxisomal functions contribute to pathogenesis at different times during infection and include peroxisome-dependent biosynthesis of iron-scavenging siderophores to enable fungal proliferation, particularly after activation of cell-mediated immunity. The multiple essential roles of fungal peroxisomes reveal this organelle as a potential but untapped target for the development of therapeutics.
过氧化物酶体是真核生物中多功能的细胞器,对于真菌中的许多功能至关重要,包括脂肪酸代谢、活性氧物种解毒和次生代谢物生物合成。一套 Pex 蛋白(过氧化物酶体)维持过氧化物酶体,而过氧化物酶体基质酶则执行过氧化物酶体的功能。插入突变鉴定出过氧化物酶体基因是支持真菌病原体在吞噬体内生长的必需成分。在 中,破坏 Pex5、Pex10 或 Pex33 过氧化物酶体阻止了通过 PTS1 途径靶向细胞器的蛋白质的过氧化物酶体导入。这种过氧化物酶体蛋白导入的丧失限制了巨噬细胞中的 细胞内生长,并在急性组织胞浆菌感染模型中减弱了毒力。替代 PTS2 导入途径的中断也减弱了 毒力,尽管只是在感染的后期时间点。Sid1 和 Sid3 铁载体生物合成蛋白含有 PTS1 过氧化物酶体导入信号,并定位于 过氧化物酶体。PTS1 或 PTS2 过氧化物酶体导入途径的丧失均损害了 铁载体的产生和铁的摄取,表明至少一些羟肟酸铁载体生物合成的合成步骤发生了区室化。然而,与 PTS2 依赖的蛋白导入丧失或铁载体生物合成丧失相比,基于 PTS1 的过氧化物酶体导入的丧失导致更早的毒力衰减,表明过氧化物酶体中的其他 PTS1 依赖功能对 毒力很重要。此外,Pex11 过氧化物酶的破坏也独立于过氧化物酶体蛋白导入和铁载体生物合成而减弱了 毒力。这些发现表明,过氧化物酶体通过促进铁载体生物合成和真菌毒力期间该细胞器的另一个未识别的作用,有助于 发病机制。重要性 感染宿主吞噬细胞,并在细胞内建立一个允许复制的小生境。为了做到这一点, 克服并颠覆了包括限制必需微量营养素在内的抗真菌防御机制。宿主细胞内的 复制需要真菌过氧化物酶体细胞器的多个不同功能。这些过氧化物酶体功能在感染的不同时间有助于 发病机制,包括过氧化物酶体依赖性铁抢夺剂铁载体的生物合成,以促进真菌增殖,特别是在细胞介导的免疫激活后。真菌过氧化物体的多种必需作用表明,该细胞器是开发治疗方法的潜在但未开发的靶点。