Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.
Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil.
Appl Environ Microbiol. 2024 Feb 21;90(2):e0173623. doi: 10.1128/aem.01736-23. Epub 2024 Jan 23.
In this study, we conducted an in-depth analysis to characterize potential () proteins capable of recognizing fungal β-1,3-glucans. specifically anchors curdlan or laminarin, indicating the presence of surface β-1,3-glucan-binding molecules. Using optical tweezers, strong adhesion of laminarin- or curdlan-coated beads to was observed, highlighting their adhesive properties compared to controls (characteristic time τ of 46.9 and 43.9 s, respectively). Furthermore, () G217B, possessing a β-1,3-glucan outer layer, showed significant adhesion to compared to a G186 strain with an α-1,3-glucan outer layer (τ of 5.3 s vs τ 83.6 s). The addition of soluble β-1,3-glucan substantially inhibited this adhesion, indicating the involvement of β-1,3-glucan recognition. Biotinylated β-1,3-glucan-binding proteins from exhibited higher binding to G217B, suggesting distinct recognition mechanisms for laminarin and curdlan, akin to macrophages. These observations hinted at the β-1,3-glucan recognition pathway's role in fungal entrance and survival within phagocytes, supported by decreased fungal viability upon laminarin or curdlan addition in both phagocytes. Proteomic analysis identified several proteins capable of binding β-1,3-glucans, including those with lectin/glucanase superfamily domains, carbohydrate-binding domains, and glycosyl transferase and glycosyl hydrolase domains. Notably, some identified proteins were overexpressed upon curdlan/laminarin challenge and also demonstrated high affinity to β-1,3-glucans. These findings underscore the complexity of binding via β-1,3-glucan and suggest the existence of alternative fungal recognition pathways in .IMPORTANCE () and macrophages both exhibit the remarkable ability to phagocytose various extracellular microorganisms in their respective environments. While substantial knowledge exists on this phenomenon for macrophages, the understanding of 's phagocytic mechanisms remains elusive. Recently, our group identified mannose-binding receptors on the surface of that exhibit the capacity to bind/recognize fungi. However, the process was not entirely inhibited by soluble mannose, suggesting the possibility of other interactions. Herein, we describe the mechanism of β-1,3-glucan binding by and its role in fungal phagocytosis and survival within trophozoites, also using macrophages as a model for comparison, as they possess a well-established mechanism involving the Dectin-1 receptor for β-1,3-glucan recognition. These shed light on a potential parallel evolution of pathways involved in the recognition of fungal surface polysaccharides.
在这项研究中,我们进行了深入分析,以表征能够识别真菌β-1,3-葡聚糖的潜在()蛋白。()特异性锚定 curdlan 或 laminarin,表明存在表面β-1,3-葡聚糖结合分子。使用光学镊子,观察到 laminarin 或 curdlan 包被珠粒与()的强烈粘附,这突显了它们与对照相比的粘附特性(特征时间 τ 分别为 46.9 和 43.9 s)。此外,()G217B 具有β-1,3-葡聚糖外层,与具有α-1,3-葡聚糖外层的()G186 菌株相比,对()表现出显著的粘附性(τ为 5.3 s,τ为 83.6 s)。添加可溶性β-1,3-葡聚糖可显著抑制这种粘附,表明涉及β-1,3-葡聚糖识别。()生物素化的β-1,3-葡聚糖结合蛋白表现出对()G217B 的更高结合,表明 laminarin 和 curdlan 的识别机制不同,类似于巨噬细胞。这些观察结果表明β-1,3-葡聚糖识别途径在真菌进入和在吞噬细胞内存活中的作用,这得到了在吞噬细胞中添加 laminarin 或 curdlan 后真菌活力降低的支持。蛋白质组学分析鉴定了几种能够结合β-1,3-葡聚糖的()蛋白,包括具有凝集素/葡聚糖酶超家族结构域、碳水化合物结合结构域以及糖基转移酶和糖苷水解酶结构域的蛋白。值得注意的是,一些鉴定出的蛋白在 curdlan/laminarin 挑战时表达上调,并且对β-1,3-葡聚糖也表现出高亲和力。这些发现强调了通过β-1,3-葡聚糖结合的复杂性,并表明在()中存在替代的真菌识别途径。重要的是()和巨噬细胞都表现出在各自环境中吞噬各种细胞外微生物的惊人能力。尽管我们对巨噬细胞的吞噬现象有了大量的了解,但对()吞噬机制的理解仍然难以捉摸。最近,我们小组在()的表面上鉴定出了甘露糖结合受体,这些受体具有结合/识别真菌的能力。然而,该过程并未完全被可溶性甘露糖抑制,这表明可能存在其他相互作用。在此,我们描述了()与β-1,3-葡聚糖结合的机制及其在真菌吞噬作用和在营养体中的存活中的作用,同时还使用巨噬细胞作为模型进行比较,因为它们具有建立良好的机制,涉及 Dectin-1 受体用于β-1,3-葡聚糖识别。这些发现揭示了参与真菌表面多糖识别的途径的潜在平行进化。